Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(9)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37761629

RESUMO

Depression is a psychiatric disorder characterized by anxiety, pessimism, and suicidal tendencies, which has serious impact on human's life. In this paper, we use Granger causality index based on polynomial kernel as network node connectivity coefficient to construct brain networks from the magnetoencephalogram (MEG) of 5 depressed patients and 11 healthy individuals under positive, neutral, and negative emotional stimuli, respectively. We found that depressed patients had more information exchange between the frontal and occipital regions compared to healthy individuals and less causal connections in the parietal and central regions. We further analyzed the topological properties of the network revealed and found that depressed patients had higher average degrees under negative stimuli (p = 0.008) and lower average clustering coefficients than healthy individuals (p = 0.034). When comparing the average degree and average clustering coefficient of the same sample under different emotional stimuli, we found that depressed patients had a higher average degree and average clustering coefficient under negative stimuli than neutral and positive stimuli. We also found that the characteristic path lengths of patients under negative and neutral stimuli significantly deviated from small-world network. Our results suggest that the analysis of polynomial kernel Granger causality brain networks can effectively characterize the pathology of depression.

2.
Biosensors (Basel) ; 12(12)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36551119

RESUMO

Nanopores are promising single-molecule sensing devices that have been successfully used for DNA sequencing, protein identification, as well as virus/particles detection. It is important to understand and characterize the current pulses collected by nanopore sensors, which imply the associated information of the analytes, including the size, structure, and surface charge. Therefore, a signal processing program, based on the MATLAB platform, was designed to characterize the ionic current signals of nanopore measurements. In a movable data window, the selected current segment was analyzed by the adaptive thresholds and corrected by multi-functions to reduce the noise obstruction of pulse signals. Accordingly, a set of single molecular events was identified, and the abundant information of current signals with the dwell time, amplitude, and current pulse area was exported for quantitative analysis. The program contributes to the efficient and fast processing of nanopore signals with a high signal-to-noise ratio, which promotes the development of the nanopore sensing devices in various fields of diagnosis systems and precision medicine.


Assuntos
Nanoporos , Nanotecnologia , Proteínas , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...