Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1044-1054, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884239

RESUMO

Aiming to understand the responses of soil seed bank to different water levels, we investigated vegetation and soil seed bank along a water level gradient (frequently flooded area, unflooded area) on the floodplain wetland of Juzhang River. We used the structural equation model to explore the direct and indirect effects of water level on soil seed bank, and used non-metric multidimensional scaling (NMDS) to assess the role of soil seed bank for vegetation regeneration. The results showed that the density of transient and persistent seed banks at unflooded area was 36.9% and 7.8% higher than that of frequently flooded area, respectively. Shannon index and Pielou index of seed bank and vegetation were significantly affected by water level and sampling location. Water level significantly affected the similarity between seed bank and aboveground vegetation, and the similarity of persistent seed bank with aboveground vegetation was significantly higher than that with transient seed bank. Structural equation model showed that water level had a direct effect on seed bank density, and indirect effects on density and richness of seed bank via affecting soil pH and NH4+-N content. NMDS results showed that there was no significant difference in the composition of the persistent seed bank and vegetation community in autumn under different water levels, but water level significantly changed the community composition of transient seed bank. Transient seed bank was affected by the vegetation and soil property, while persistent seed bank was determined by aboveground vegetation and water level. Although soil seed bank had low regeneration potential for the vegetation communities in floodplain wetlands, soil seed bank could not be neglected during the restoration of propagule diversity after disturbance in wetlands. Persistent seed bank would be an importance source of diversity of propagules for floodplain wetlands restoration following disturbance.


Assuntos
Rios , Solo , Áreas Alagadas , China , Solo/química , Inundações , Conservação dos Recursos Naturais , Sementes/crescimento & desenvolvimento , Ecossistema , Movimentos da Água , Banco de Sementes
2.
Environ Sci Pollut Res Int ; 30(16): 46383-46393, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36719573

RESUMO

Bisphenol A (BPA) is considered a contaminant of emerging concern and interferes with the normal activities of living organisms. The toxicity of BPA is evident in animals and terrestrial plants. However, the response of aquatic plants to low BPA concentrations is still unclear. In the present study, effects of varying BPA loadings (targeting at 0.01, 0.1, and 1 mg/L) on the growth and reproductive traits of the dioecious annual submerged macrophyte Vallisneria natans were assessed through a 5-month experiment. The results showed that BPA inhibited the elongation of V. natans leaves but resulted in an increase in leaf number and ramet number under the highest BPA loading treatment (targeting at 1 mg/L). In addition, detectable biochemical changes in the total carbon and soluble sugar contents were found, which both were significantly higher at the highest BPA loading treatment. However, the total biomass did not alter significantly after the BPA treatments, indicating that BPA did not induce direct toxic effects on the growth of V. natans. At the highest BPA loading treatment, female individuals of V. natans allocated less number for ramet than male ones, showing a clear sexual dimorphism. No significant differences between the five treatments were found for the flower or fruit traits, while the germination rate was significantly inhibited for the seeds collected from the highest BPA loading treatment. In conclusion, V. natans tolerated low concentrations of BPA by making a trade-off between ramet (leaf) number and leaf elongation, as well as modulating the total carbon and soluble sugar contents. However, serious consequence of decline in seed viability implied that the impact of BPA on plant reproduction were usually underestimated.


Assuntos
Hydrocharitaceae , Plantas , Animais , Biomassa , Sementes , Hydrocharitaceae/fisiologia
3.
Environ Pollut ; 318: 120906, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36549447

RESUMO

Submerged macrophytes play an important role in the global carbon cycle through diversified pathways of inorganic carbon (Ci) utilization distinct from terrestrial plants. However, the effects of silver nanoparticles (AgNPs), an emerging contaminant, were unknown on the Ci utilization of submerged macrophytes. In Ottelia alismoides, the only known submerged macrophyte with three pathways of Ci utilization, before absorption, AgNPs inhibited the external carbonic anhydrase activity thus reducing the capacity of the plant to use HCO3-. After entering the plant, AgNPs mainly aggregated at the cell wall and in the chloroplast. The internalized AgNPs inhibited ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco) activity blocking CO2 fixation and disturbed C4 and crassulacean acid metabolism (CAM) by inhibiting phosphoenolpyruvate carboxylase (PEPC), pyruvate phosphate dikinase (PPDK), and NAD-dependent malic enzyme (NAD-ME) activities to alter intracellular malate biosynthesis and decarboxylation. Overall, our findings indicate that the Ci utilization of the submerged macrophyte is a target of AgNPs toxicity that might affect the carbon cycle in aquatic systems.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , NAD/metabolismo , Fotossíntese , Plantas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...