Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 10948-10961, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570956

RESUMO

Folded lenses offer advantages in terms of lightness and thinness, but they have limitations when it comes to correcting aberrations. In this paper, we propose a novel approach to address this issue by incorporating metasurfaces in the design of folded optical systems. Specifically, a folded refractive-metasurface hybrid annular aperture folded lens (AFL) is introduced. The structural characteristics of the AFL imaging system are analyzed to investigate the blocking ratio, thickness, and light collection capability of the ring aperture system. Additionally, a hybrid optical integration design using Zemax software is proposed for the metasurfaces. A quadruple-folded AFL working in the mid-infrared waveband is then designed. The superstructure surface is analyzed, and its processability is discussed. The results demonstrate that the reflective-metasurface hybrid AFL significantly improves the imaging quality of this type of optical system while meeting the required design accuracy.

2.
Acta Biomater ; 153: 139-148, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36167238

RESUMO

Designing biomaterials with precise immunomodulation can help to decipher the dynamic interactions between macrophages and biomaterials to match the tissue healing process. Although some advanced stimuli-responsive immunomodulatory biomaterials were reported for cell dynamic modulation, while most triggers need external stimuli by manual intervention, there would be the inevitable errors and uncertainties. Thus, developing immunomodulatory biomaterials with adaptive abilities, which can recognize the inflammation signals, change their properties spatiotemporally under the microenvironment triggers, and provide feedback to realize macrophages modulation in different healing stages, has become a promising strategy. In this work, we developed an inflammation-adaptive Arg-Gly-Asp (RGD) -patterned surface for spatiotemporal immunomodulation of macrophage. We fabricated a methacrylated hyaluronic acid (MA-HA) hydrogel with thiol-functionalized RGD-patterned surface by employing photolithography technology. Then, thiol-functionalized RGD contained ROS-cleavable linker was filled the remaining sites and consequently, a dynamic surface with temporary homogeneous RGD was obtained. Under the overproduction of ROS by the inflammation-activated macrophages, the linker was cleaved, and the homogeneous RGD surface was transformed to the RGD patterned surface, which triggered elongation of macrophages and consequently the upregulated expressions of arginase-1, IL-10 and TNF-ß1, indicating the polarization toward to anti-inflammatory phenotype. Developing inflammatory environment-adaptive surface for spatiotemporal modulation of macrophages polarization provides a precise and smart strategy for the healing-matched immunomodulation to facilitate healing outcomes. STATEMENT OF SIGNIFICANCE: Designing biomaterials with precise immunomodulation can help to decipher the dynamic interactions between macrophages and biomaterials to match tissue repair process. Some immunomodulatory biomaterials were reported for cell dynamic modulation, while most triggers need external manual intervention. Thus, we developed an immunomodulatory biomaterial with inflammation-adaptive patterned surface, which can recognize abnormal signals and change its properties spatiotemporally under the microenvironment triggers, and provide feedback to realize macrophages modulation in different stages. The dynamic surface can adapt to the changes of microenvironment and dynamically to match the cell behavior and tissue healing process on demand without external manual intervention. Additionally, the surface achieves the balance of macrophages with pro- and anti-inflammatory phenotypes in the tissue repair process.


Assuntos
Imunomodulação , Macrófagos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Macrófagos/metabolismo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/metabolismo , Inflamação/metabolismo , Anti-Inflamatórios/metabolismo , Oligopeptídeos/farmacologia , Oligopeptídeos/metabolismo , Compostos de Sulfidrila
3.
Bioact Mater ; 6(11): 4065-4072, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33997493

RESUMO

Due to the critical roles of macrophage in immune response and tissue repair, harnessing macrophage phenotypes dynamically to match the tissue healing process on demand attracted many attentions. Although there have developed many advanced platforms with dynamic features for cell manipulation, few studies have designed a dynamic chemical pattern to sequentially polarize macrophage phenotypes and meet the immune requirements at various tissue repair stages. Here, we propose a novel strategy for spatiotemporal manipulation of macrophage phenotypes by a UV-induced dynamic Arg-Gly-Asp (RGD) pattern. By employing a photo-patterning technique and the specific interaction between cyclodextrin (CD) and azobenzene-RGD (Azo-RGD), we prepared a polyethylene glycol-dithiol/polyethylene glycol-norbornene (PEG-SH/PEG-Nor) hydrogel with dynamic RGD-patterned surface. After irradiation with 365-nm UV light, the homogeneous RGD surface was transformed to the RGD-patterned surface which induced morphological transformation of macrophages from round to elongated and subsequent phenotypic transition from pro-inflammation to anti-inflammation. The mechanism of phenotypic polarization induced by RGD pattern was proved to be related to Rho-associated protein kinase 2 (ROCK2). Sequential modulation of macrophage phenotypes by the dynamic RGD-patterned surface provides a remote and non-invasive strategy to manipulate immune reactions and achieve optimized healing outcomes.

4.
Biomater Sci ; 9(7): 2553-2561, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576368

RESUMO

Considering the key roles of macrophages in tissue repair and immune therapy, designing smart biomaterials able to harness macrophage phenotypes on demand during the healing process has become a promising strategy. Here, a novel "sandwich" cell culture platform with near-infrared (NIR) responsive dynamic stiffness was fabricated to polarize bone marrow-derived macrophages (BMDMs) in situ for revealing the relationship between the macrophage phenotype and substrate stiffness dynamically. Under NIR irradiation, calcium ions (Ca2+) diffused through the middle layer of the IR780-mixed phase change material (PCM) due to the photothermal effect of IR780, resulting in an increase of hydrogel stiffness in situ by the crosslinking of the upper layer of the hyaluronic acid-sodium alginate hydrogel (MA-HA&SA). The up-regulation of inducible nitric oxide synthase (iNOS) and tumor necrosis factor-α (TNF-α) was quantified by immunostaining and enzyme-linked immune sorbent assay (ELISA), respectively, indicating the transformation of macrophages from the anti-inflammatory to pro-inflammatory phenotype under dynamic stiffness. The nuclear Yes-associated-protein (YAP) ratio positively correlated with the shift of the macrophage phenotype. The modulation of macrophage phenotypes by stiffness-rise without the stimuli of cytokines offers an effective and noninvasive strategy to manipulate immune reactions to achieve optimized healing or therapeutic outcomes.


Assuntos
Macrófagos , Fator de Necrose Tumoral alfa , Técnicas de Cultura de Células , Hidrogéis , Fenótipo
5.
Biomater Sci ; 8(6): 1649-1657, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31971164

RESUMO

Wound infection is a major challenge in the clinic that greatly hinders the wound healing process. It is highly important to develop smart wound dressings that can sense bacterial infection at early stages and provide on-demand treatment. In this work, a smart hydrogel-based wound dressing capable of monitoring bacterial infection via a pH-responsive fluorescence resonance energy transfer (FRET) transition of Cyanine3 (Cy3) and Cyanine5 (Cy5) in a bacterial environment and providing on-demand treatment of infection via near infrared (NIR) light-triggered antibiotic release was developed. The smart hydrogel was prepared by physical crosslinking of polyvinyl alcohol (PVA) and an ultraviolet (UV)-cleavable polyprodrug (GS-Linker-MPEG), in which Cy3 and Cy5-modified silica nanoparticles (SNP-Cy3/Cy5) were loaded and acted as a pH-responsive fluorescent probe to detect bacterial infection based on the FRET effect between Cy3 and Cy5. Also, up-conversion nanoparticles (UCNP) were loaded into the hydrogels to cleave the UV-responsive GS-Linker-MPEG and achieve NIR-responsive release of GS in the bacterial environment. The in vitro studies proved that the smart hydrogels present good water absorption ability and excellent mechanical properties as well as good biocompatibility, which are necessary for their application in wound dressings. Moreover, the hydrogels showed obvious FRET transitions in both acidic buffer and bacteria solution. Upon irradiating the hydrogels with NIR light, UCNP were able to convert NIR light to UV light to trigger the release of GS from the hydrogels for antibacterial treatment. This research is expected to provide a new strategy for self-reporting and effective treatment of wound infection.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Carbocianinas/química , Gentamicinas/farmacologia , Pró-Fármacos/farmacologia , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Curativos Hidrocoloides , Contagem de Colônia Microbiana , Transferência Ressonante de Energia de Fluorescência , Gentamicinas/química , Concentração de Íons de Hidrogênio , Raios Infravermelhos , Camundongos , Células NIH 3T3 , Nanopartículas , Álcool de Polivinil/química , Pró-Fármacos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...