Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian J Pharm Sci ; 19(2): 100904, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38601010

RESUMO

The challenge in the clinical treatment of Parkinson's disease lies in the lack of disease-modifying therapies that can halt or slow down the progression. Peptide drugs, such as exenatide (Exe), with potential disease-modifying efficacy, have difficulty in crossing the blood-brain barrier (BBB) due to their large molecular weight. Herein, we fabricate multi-functionalized lipid nanoparticles (LNP) Lpc-BoSA/CSO with BBB targeting, permeability-increasing and responsive release functions. Borneol is chemically bonded with stearic acid and, as one of the components of Lpc-BoSA/CSO, is used to increase BBB permeability. Immunofluorescence results of brain tissue of 15-month-old C57BL/6 mice show that Lpc-BoSA/CSO disperses across the BBB into brain parenchyma, and the amount is 4.21 times greater than that of conventional LNP. Motor symptoms of mice in Lpc-BoSA/CSO-Exe group are significantly improved, and the content of dopamine is 1.85 times (substantia nigra compacta) and 1.49 times (striatum) that of PD mice. α-Synuclein expression and Lewy bodies deposition are reduced to 51.85% and 44.72% of PD mice, respectively. Immunohistochemical mechanism studies show AKT expression in Lpc-BoSA/CSO-Exe is 4.23 times that of PD mice and GSK-3ß expression is reduced to 18.41%. Lpc-BoSA/CSO-Exe could reduce the production of α-synuclein and Lewy bodies through AKT/GSK-3ß pathway, and effectively prevent the progressive deterioration of Parkinson's disease. In summary, Lpc-BoSA/CSO-Exe increases the entry of exenatide into brain and promotes its clinical application for Parkinson's disease therapy.

2.
CNS Neurosci Ther ; 29(12): 3684-3692, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438945

RESUMO

AIMS: Mania is a prevalent psychiatric disorder with undefined pathological mechanism. Here, we reviewed current knowledge indicating the potential involvement of autophagy dysregulation in mania and further discussed whether targeting autophagy could be a promising strategy for mania therapy. DISCUSSIONS: Accumulating evidence indicated the involvement of autophagy in the pathology of mania. One of the most well-accepted mechanisms underlying mania, circadian dysregulation, showed mutual interaction with autophagy dysfunction. In addition, several first-line drugs for mania therapy were found to regulate neuronal autophagy. Besides, deficiencies in mitochondrial quality control, neurotransmission, and ion channel, which showed causal links to mania, were intimately associated with autophagy dysfunction. CONCLUSIONS: Although more efforts should be made to either identify the key pathology of mania, the current evidence supported that autophagy dysregulation may act as a possible mechanism involved in the onset of mania-like symptoms. It is therefore a potential strategy to treat manic disorder by correting autophagy.


Assuntos
Transtorno Bipolar , Mania , Humanos , Transtorno Bipolar/diagnóstico
3.
Cell Biosci ; 6: 5, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26816615

RESUMO

BACKGROUND: Human head and neck squamous carcinoma is the 6th most prevalent carcinoma worldwide. Although many novel therapies have been developed, the clinical treatment for patients remains non-ideal. Chloride intracellular channel 4 (CLIC4), one of the seven members of the CLIC family, is a newly found Cl(-) channel that participates in various biological processes, including cellular apoptosis and differentiation. Accumulating evidence has revealed the significant role of CLIC4 in regulating the apoptosis of different cancer cells. Here, we investigated the functional role of CLIC4 in the apoptosis of HN4 cells, a human head and neck squamous carcinoma cell line. RESULTS: In the present study, we used immunohistochemical staining to demonstrate that the expression level of CLIC4 is elevated in the tissue of human oral squamous carcinoma compared with healthy human gingival tissue. Specific CLIC4 small interfering RNA was used to knockdown the expression of CLIC4. The results showed that knockdown of CLIC4 with or without 100 µM adenosine triphosphate (ATP) treatment significantly increased the expression of Bax, active caspase 3, active caspase 4 and CHOP but suppressed Bcl-2 expression in HN4 cells. Moreover, the results from the TdT-mediated dUTP nick end labeling assay indicated that CLIC4 knockdown induced a higher apoptotic rate in HN4 cells under the induction of ATP. In addition, knockdown of CLIC4 dramatically enhanced ATP-induced mitochondrial membrane depolarization in HN4 cells. Moreover, intracellular Ca(2+) measurement revealed that Ca(2+) release induced by ATP and thapsigargin, a Ca(2+)-ATPase inhibitor of the endoplasmic reticulum, was significantly enhanced by the suppression of CLIC4 in HN4 cells. CONCLUSIONS: Knockdown of CLIC4 enhanced ATP-induced apoptosis in HN4 cells. Both the pathways of mitochondria and endoplasmic reticulum stress were involved in CLIC4-mediated cell apoptosis. Based on our finding, CLIC4 may be a potential and valuable target for the clinical treatment of head and neck squamous carcinoma.

4.
Biochem Biophys Res Commun ; 466(3): 456-62, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26367175

RESUMO

Orai1 is one of the key components of store-operated Ca(2+) entry (SOCE) involved in diverse physiological functions. Orai1 may associate with other proteins to form a signaling complex. In the present study, we investigated the interaction between Orai1 and small conductance Ca(2+)-activated potassium channel 3 (SK3). With the use of RNA interference technique, we found that the SOCE and its associated membrane hyperpolarization were reduced while Orai1 was knocked down by a specific Orai1 siRNA in guinea pig gallbladder smooth muscle. However, with the use of isometric tension measurements, our results revealed that agonist-induced muscle contractility was significantly enhanced after Orai1 protein was knocked down or the tissue was treated by SK3 inhibitor apamin, but not affected by larger conductance Ca(2+)-activated potassium channel inhibitor iberiotoxin or intermediate conductance Ca(2+)-activated potassium channel inhibitor TRAM-34. In addition, in the presence of apamin, Orai1 siRNA had no additional effect on agonist-induced contraction. In coimmunoprecipitation experiment, SK3 and Orai1 pulled down each other. These data suggest that, Orai1 physically associated with SK3 to form a signaling complex in gallbladder smooth muscle. Ca(2+) entry via Orai1 activates SK3, resulting in membrane hyperpolarization in gallbladder smooth muscle. This hyperpolarizing effect of Orai1-SK3 coupling could serve to prevent excessive contraction of gallbladder smooth muscle in response to contractile agonists.


Assuntos
Canais de Cálcio/metabolismo , Vesícula Biliar/metabolismo , Músculo Liso/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Animais , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/química , Canais de Cálcio/genética , Sinalização do Cálcio , Vesícula Biliar/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Cobaias , Técnicas In Vitro , Masculino , Potenciais da Membrana , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Interferência de RNA , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Canais de Potássio Ativados por Cálcio de Condutância Baixa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...