Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biopharm Stat ; : 1-23, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363805

RESUMO

There has been an increasing use of master protocols in oncology clinical trials because of its efficiency to accelerate cancer drug development and flexibility to accommodate multiple substudies. Depending on the study objective and design, a master protocol trial can be a basket trial, an umbrella trial, a platform trial, or any other form of trials in which multiple investigational products and/or subpopulations are studied under a single protocol. Master protocols can use external data and evidence (e.g. external controls) for treatment effect estimation, which can further improve efficiency of master protocol trials. This paper provides an overview of different types of external controls and their unique features when used in master protocols. Some key considerations in master protocols with external controls are discussed including construction of estimands, assessment of fit-for-use real-world data, and considerations for different types of master protocols. Similarities and differences between regular randomized controlled trials and master protocols when using external controls are discussed. A targeted learning-based causal roadmap is presented which constitutes three key steps: (1) define a target statistical estimand that aligns with the causal estimand for the study objective, (2) use an efficient estimator to estimate the target statistical estimand and its uncertainty, and (3) evaluate the impact of causal assumptions on the study conclusion by performing sensitivity analyses. Two illustrative examples for master protocols using external controls are discussed for their merits and possible improvement in causal effect estimation.

2.
Stat Med ; 38(16): 3040-3052, 2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-30989691

RESUMO

In existing benefit-risk assessment (BRA) methods, benefit and risk criteria are usually identified and defined separately based on aggregated clinical data and therefore ignore the individual-level differences as well as the association among the criteria. We proposed a Bayesian multicriteria decision-making method for BRA of drugs using individual-level data. We used a multidimensional latent trait model to account for the heterogeneity of treatment effects with latent variables introducing the dependencies among outcomes. We then applied the stochastic multicriteria acceptability analysis approach for BRA incorporating imprecise and heterogeneous patient preference information. We adopted an efficient Markov chain Monte Carlo algorithm when implementing the proposed method. We applied our method to a case study to illustrate how individual-level benefit-risk profiles could inform decision-making.


Assuntos
Teorema de Bayes , Técnicas de Apoio para a Decisão , Medição de Risco/métodos , Algoritmos , Simulação por Computador , Humanos , Cadeias de Markov , Método de Monte Carlo , Preparações Farmacêuticas , Processos Estocásticos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...