Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 360: 127627, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850389

RESUMO

The work aimed to explore effects of polytetrafluoroethylene nanoplastics on joint inhibitions of ciprofloxacin and bivalent copper on the nitrogen removal in a sequencing batch reactor and its potential mechanisms. The addition of bivalent copper and/or ciprofloxacin reduced the ammonia nitrogen elimination rate with or without polytetrafluoroethylene nanoplastics. Adsorption kinetics and thermodynamics showed the binary bivalent copper and ciprofloxacin promoted their adsorptions by polytetrafluoroethylene nanoplastics. Polytetrafluoroethylene nanoplastics enhanced combined toxicities of ciprofloxacin and bivalent copper to sludge activities and microbial community involved into nitrification and denitrification due to the adsorption of ciprofloxacin and bivalent copper by polytetrafluoroethylene nanoplastics. With or without polytetrafluoroethylene nanoplastics, bivalent copper and/or ciprofloxacin caused more obvious level changes of protein than polysaccharide. This study provides novel insights for understanding the effect of combined heavy metals and antibiotics on the performance in a sequencing batch reactor with the nanoplastics stress.


Assuntos
Microbiota , Esgotos , Reatores Biológicos , Ciprofloxacina/farmacologia , Cobre/farmacologia , Desnitrificação , Microplásticos , Nitrificação , Nitrogênio/metabolismo , Politetrafluoretileno/farmacologia
2.
Bioresour Technol ; 314: 123769, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32623283

RESUMO

The responses of nitrification and denitrification to the divalent zinc (Zn(II)) and tetracycline (TC) co-selective pressure were evaluated in a sequencing batch reactor (SBR). The removal rates of organics and nitrogen, nitrifying and denitrifying enzymatic activity, and microbial diversity and richness at the Zn(II) and TC co-selective pressure were higher than those at the alone Zn(II) selective pressure, while were lower than those at the individual TC selective pressure. The Zn(II) and TC co-selective pressure induced the TC resistance genes abundance increase and the Zn(II) resistance genes levels decrease, and enhanced bacterial enzymatic modification resistance to TC and bacterial outer membrane resistance to Zn(II). The network analysis showed that the genera Nitrospira and Nitrosomonas of nitrifiers and the genera Ferruginibacter, Dechloromonas, Acidovorax, Rhodobacter, Thauera, Cloacibacterium, Zoogloea and Flavobacterium of denitrifiers were the potential hosts of antibiotics resistance genes (ARGs) and/or heavy metals resistance genes (HMRGs).


Assuntos
Desnitrificação , Nitrificação , Antibacterianos , Reatores Biológicos , Nitrogênio/análise , Águas Residuárias , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...