Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044367

RESUMO

Peach (Prunus persica [L.] Batsch) as an economically important fruit tree is widely cultivated in Shenzhou, China. In September 2021, peach rust was observed in the peach tree in Shenzhou City, Hebei Province (lat. 38°02'56'' N, long. 115°54'57'' E, altitude 22 m). We investigated a peach orchard with a planting area of 1334 m2, where a total of 162 peach trees were planted, and found that about 10% of peach trees exhibited severe disease symptoms. The leaves of infected plant developed 100% disease symptoms, in which 50% of the infected leaves showed about 10 small pale-yellow spots on the front of leaves and reddish-brown pustules on the corresponding abaxial surface of leaves. Urediniospores varied from obovoid to clavate in shape, sometimes in irregular shape. They were orange-brown, echinulate near base with spines smaller towards apex and often smooth at apex, with germ pores 3-4 at equator, size ranging from 25.4 to 38.6 × 10.1 to 18.7 µm (n=100), and with wall 1 to 1.5µm thick at sides and 5-7 µm thick at apex. Golden capitate paraphyses were present, ranging from 25 to 40 µm in length, with a head in diameter of 12 to 14 µm and a tail in width of 5.2 to 6.5 µm. Based on the rust morphological characters, this pathogen was primarily identified as Tranzschelia discolor (Fuckel) Tranzschel & Litv. (Hiratsuka et al. 1992). For molecular identification, total DNA was extracted from 2 isolates, respectively, and the internal transcribed spacer (ITS) region was PCR-amplified using the primer set ITS5-u and ITS4-u (Pfunder et al. 2001). Obtained sequences were compared with sequences in the GenBank repository using BLAST algorithm. BLAST showed a 100% sequence identify to T. discolor (accession nos. AB097449、MT786217、KU712078、KY764179、MH599069). The sequence has been deposited in GenBank with (accession NO. ON950745 and ON950747). Thus, combining morphological observations and molecular identification, the isolate was identified as T. discolor. The pathogenicity was verified by inoculating the abaxial surface of peach leaves with a suspension of 1 × 106 urediniospores/ml. Peach leaves sprayed with sterile water were used as controls. The inoculated peach trees were placed in a greenhouse at 20°C under dark for 24 hours and maintained at 100% relative humidity to promote disease development. Next, the peach trees were grown in a greenhouse at 20°C with a 12 h day length and symptoms were observed on the leaves 14 days after inoculation. In contrast, the control leaves were asymptomatic. Previous studies reported that peach rust occurred in Oman, Korea and Brazil was caused by T. discolor. (Deadman M L, et al.2007, Shin, H D, et al. 2019, Vidal G S, et al. 2021). To our knowledge, this is the first report of T. discolor as a causal agent causing peach leaf rust in Northern China, which will enable us to rapidly diagnose this disease, identify the occurrence of this disease and develop adequate management strategies to control it in China.

2.
J Agric Food Chem ; 70(23): 6982-6992, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35658436

RESUMO

Indole is a popular and functional scaffold existing widely in the fields of medicine, pesticides, spices, food and feed additives, dyes, and many others. Among indoles, 2-arylindole represents a particular and interesting subset but has attracted less attention for drug discovery. In this study, we report a general, practical one-pot assembly of a variety of 2-arylindole derivatives. To develop novel fungicide scaffolds, their fungicide activity was also evaluated. The bioassay results showed that many of the synthesized 2-arylindoles exhibited considerable fungicidal activities especially toward Rhizoctonia cerealis, and several demonstrated an inhibition rate of more than 90%. Notably, 4-fluoro-2-phenyl-1H-indole 6e was obtained with a broad spectrum of fungicidal activities, which showed excellent growth inhibition activities against R. cerealis, Rhizoctonia solani, Botrytis cinerea, Magnaporthe oryza, and Sclerotinia sclerotiorum with EC50 values of 2.31, 4.98, 6.78, 10.57, and 17.80 µg/mL, respectively. Preliminary fungicidal mode of action of 6e showed a significant inhibition effect on mycelial growth and spore germination. These results indicated that 2-arylindoles as privileged scaffolds exhibited potential fungicidal activities that deserve further study.


Assuntos
Fungicidas Industriais , Magnaporthe , Botrytis , Fungicidas Industriais/farmacologia , Micélio , Relação Estrutura-Atividade
3.
J Agric Food Chem ; 70(11): 3447-3457, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35282681

RESUMO

A rational molecule design strategy based on scaffold hopping was applied to discover novel leads, and then a series of novel pyrazole amide derivatives were designed, synthesized, characterized, and evaluated for their antifungal activities. Bioassay results indicated that some target compounds such as S3, S12, and S26 showed good in vivo antifungal activities; among them, S26 exhibited commendable in vivo protective activity with an 89% inhibition rate against Botrytis cinerea on cucumber at 100 µg/mL that is comparable to positive controls boscalid, isopyrazam, and fluxapyroxad. Microscopy observations suggested that S26 affects the normal fungal growth. Fluorescence quenching analysis and SDH (succinate dehydrogenase) enzymatic inhibition studies validated that S26 may not be an SDH inhibitor. Based on induction of plant defense responses testing, S26 enhanced the accumulation of RBOH, WRKY6, WRKY30, PR1, and PAL defense-related genes expression and the defense-associated enzyme phenylalanine ammonia lyase (PAL) expression on cucumber. These findings support that S26 not only displayed direct fungicidal activity but also exhibited plant innate immunity stimulation activity, and it could be used as a promising plant defense-related fungicide candidate.


Assuntos
Amidas , Fungicidas Industriais , Pirazóis , Amidas/farmacologia , Botrytis/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Pirazóis/farmacologia , Relação Estrutura-Atividade , Succinato Desidrogenase
4.
PLoS Genet ; 16(7): e1008713, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32658889

RESUMO

Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.


Assuntos
Antígenos de Plantas/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...