Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 95, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864372

RESUMO

BACKGROUND: Acanthocephala is a clade of obligate endoparasites whose mitochondrial genomes (mitogenomes) and evolution remain relatively poorly understood. Previous studies reported that atp8 is lacking from acanthocephalan mitogenomes, and that tRNA genes often have nonstandard structures. Heterosentis pseudobagri (Arhythmacanthidae) is an acanthocephalan fish endoparasite for which no molecular data are currently available, and biological information is unavailable in the English language. Furthermore, there are currently no mitogenomes available for Arhythmacanthidae. METHODS: We sequenced its mitogenome and transcriptome, and conducted comparative mitogenomic analyses with almost all available acanthocephalan mitogenomes. RESULTS: The mitogenome had all genes encoded on the same strand and unique gene order in the dataset. Among the 12 protein-coding genes, several genes were highly divergent and annotated with difficulty. Moreover, several tRNA genes could not be identified automatically, so we had to identify them manually via a detailed comparison with orthologues. As common in acanthocephalans, some tRNAs lacked either the TWC arm or the DHU arm, but in several cases, we annotated tRNA genes only on the basis of the conserved narrow central segment comprising the anticodon, while the flanking 5' and 3' ends did not exhibit any resemblance to orthologues and they could not be folded into a tRNA secondary structure. We corroborated that these are not sequencing artefacts by assembling the mitogenome from transcriptomic data. Although this phenomenon was not observed in previous studies, our comparative analyses revealed the existence of highly divergent tRNAs in multiple acanthocephalan lineages. CONCLUSIONS: These findings indicate either that multiple tRNA genes are non-functional or that (some) tRNA genes in (some) acanthocephalans might undergo extensive posttranscriptional tRNA processing which restores them to more conventional structures. It is necessary to sequence mitogenomes from yet unrepresented lineages and further explore the unusual patterns of tRNA evolution in Acanthocephala.


Assuntos
Acantocéfalos , Genoma Mitocondrial , Animais , Acantocéfalos/genética , Genoma Mitocondrial/genética , RNA de Transferência/genética , Anticódon , Artefatos
2.
Parasit Vectors ; 15(1): 376, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36261865

RESUMO

BACKGROUND: Classification of the Acanthocephala, a clade of obligate endoparasites, remains unresolved because of insufficiently strong resolution of morphological characters and scarcity of molecular data with a sufficient resolution. Mitochondrial genomes may be a suitable candidate, but they are available for a small number of species and their suitability for the task has not been tested thoroughly. METHODS: Herein, we sequenced the first mitogenome for the large family Rhadinorhynchidae: Micracanthorhynchina dakusuiensis. These are also the first molecular data generated for this entire genus. We conducted a series of phylogenetic analyses using concatenated nucleotides (NUC) and amino acids (AAs) of all 12 protein-coding genes, three different algorithms, and the entire available acanthocephalan mitogenomic dataset. RESULTS: We found evidence for strong compositional heterogeneity in the dataset, and Micracanthorhynchina dakusuiensis exhibited a disproportionately long branch in all analyses. This caused a long-branch attraction artefact (LBA) of M. dakusuiensis resolved at the base of the Echinorhynchida clade when the NUC dataset was used in combination with standard phylogenetic algorithms, maximum likelihood (ML) and Bayesian inference (BI). Both the use of the AA dataset (BI-AAs and ML-AAs) and the CAT-GTR model designed for suppression of LBA (CAT-GTR-AAs and CAT-GTR-NUC) at least partially attenuated this LBA artefact. The results support Illiosentidae as the basal radiation of Echinorhynchida and Rhadinorhynchidae forming a clade with Echinorhynchidae and Pomporhynchidae. The questions of the monophyly of Rhadinorhynchidae and its sister lineage remain unresolved. The order Echinorhynchida was paraphyletic in all of our analyses. CONCLUSIONS: Future studies should take care to attenuate compositional heterogeneity-driven LBA artefacts when applying mitogenomic data to resolve the phylogeny of Acanthocephala.


Assuntos
Acantocéfalos , Animais , Acantocéfalos/anatomia & histologia , Filogenia , Artefatos , Nucleotídeos/genética , Teorema de Bayes , Aminoácidos/genética
3.
Zookeys ; 945: 1-16, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714004

RESUMO

Azygia hwangtsiyui (Trematoda, Azygiidae), a neglected parasite of predatory fishes, is little-known in terms of its molecular epidemiology, population ecology and phylogenetic study. In the present study, the complete mitochondrial genome of A. hwangtsiyui was sequenced and characterized: it is a 13,973 bp circular DNA molecule and encodes 36 genes (12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes) as well as two non-coding regions. The A+T content of the A. hwangtsiyui mitogenome is 59.6% and displays a remarkable bias in nucleotide composition with a negative AT skew (-0.437) and a positive GC skew (0.408). Phylogenetic analysis based on concatenated amino acid sequences of twelve protein-coding genes reveals that A. hwangtsiyui is placed in a separate clade, suggesting that it has no close relationship with any other trematode family. This is the first characterization of the A. hwangtsiyui mitogenome, and the first reported mitogenome of the family Azygiidae. These novel datasets of the A. hwangtsiyui mt genome represent a meaningful resource for the development of mitochondrial markers for the identification, diagnostics, taxonomy, homology and phylogenetic relationships of trematodes.

4.
Yi Chuan ; 32(3): 254-63, 2010 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-20233703

RESUMO

The development of hydroelectricity in the Nujiang River would have adverse impacts on the populations of Glyptothorax zanaensis. In order to assess the genetic diversity and differentiation of this species, we sequenced the cytochrome b gene of the mitochondria in 102 individuals of the fish collected from 6 sampling sites (Gongshan, Gudeng and Lushui in the Nujiang Prefectural District and Daojie, Mengnuo and Mucheng in the Baoshan Municipal District). A total of 87 variation sites were detected in the fragment of 1 137 bp in length, with which the 102 samples were defined as 36 haplotypes. The haplotype diversity (h) and the nucleotide diversity (pi) of total samples were 0.851+/-0.028 and 0.01356+/-0.0008, respectively. Therefore, the genetic diversity of G. zanaensis was relatively low. However, the genetic diversity of the Nujiang population was significantly higher than that of the Baoshan population. The pairwise Fst value between the populations (0.475-0.846) was higher than that within the population (0.002-0.108), which implied that the Fst value was positively related to geographic distance. Analysis of molecular variance (AMOVA) showed that the genetic differentiation between the populations and within the populations were 53.65% and 46.35%, respectively. The fixation index (Fst value) was 0.5365, indicating that there existed significant differentiation between the Nujiang population and the Baoshan population. The phylogentic tree and networks of the haplotypes of G. zanaensis showed that there were two separate lineages: the Nujiang lineage and the Baoshan lineage. Each lineage represents at least one separated management unit, or belongs to an evolutionary significant unit. It was suggested that in the construction of hydroelectric projects the measures for protecting G. zanaensis should be adopted in fully considering the populations of G. zanaensis and the status quo of their population structure to avoid the occurrence of gene exchange among populations.


Assuntos
Peixes/genética , Variação Genética/genética , Animais , China , Citocromos b/genética , Peixes/classificação , Genética Populacional , Geografia , Haplótipos/genética , Filogenia
5.
Yi Chuan ; 28(3): 285-90, 2006 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-16551594

RESUMO

The genetic variations and polymorphisms of six microsatellite loci were analyzed to determine the population structure and breeding progress of BMY and Brahman cattle. The range of polymorphic information content of six loci was 0.524-0.752. The unbiased expected and observed heterozygosity were similar and were 0.7376 and 0.7396, 0.6412 and 0.6537 for BMY and Brahman cattle, respectively. The expected heterozygosity was relatively high in the second generation of BMY in inter se breeding, which was congruent with the breeding progress. In addition, the value for Red Angus was 0.4609, which was lower and close to the Japanese Brown cattle (0.471), and may indicate its relative homogeneity.


Assuntos
Variação Genética/genética , Repetições de Microssatélites/genética , Animais , Bovinos , Genética Populacional , Heterozigoto , Polimorfismo Genético/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...