Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(11): e0223756, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31689311

RESUMO

Given the importance and complexity of crop evapotranspiration estimation under drought stress, an experiment tailored for maize under drought stress was completed using six sets of large-scale weighing lysimeters at the Xinmaqiao Comprehensive Experimental Irrigation and Drainage Station, Anhui Province, China. Our aim was to analyze maize evapotranspiration under different drought conditions. Based on estimates of maize evapotranspiration under no drought stress using the dual crop coefficient approach, we optimized and calibrated basic crop coefficients Kcbini, Kcbmid, Kcbend, and the maximum crop coefficient Kcmax using a genetic algorithm. Measurements of solar radiation at the experimental station were used to derive the empirical parameters a and b from the Angstrom formula through the genetic algorithm, and then evapotranspiration was calculated for the reference crop (ET0). We then estimated the maize evapotranspiration under drought using the dual crop coefficient approach. The results indicated that a slight water deficit during the earlier stage of vegetative growth may stimulate the maize homeostatic mechanism and increase tolerance to drought stress in later growth periods. Maize evapotranspiration significantly decreased if drought stress continued into the elongation stage, and the same degree of drought stress had a greater influence on the middle and later stages of vegetative and reproductive growth. The calibrated results for Kcbini, Kcbmid, Kcbend, and Kcmax were 0.155, 1.218, 0.420 and 1.497 respectively. We calculated the root-mean-square error (RMSE), mean absolute error (MAE), and mean relative error (MRE) of maize evapotranspiration under no drought stress over the full growing season using a dual crop coefficient approach, and the results were 1.33 mm/day, 0.99 mm/day, and 1.30%, respectively, or 18.40%, 17.50%, and 91.11% lower than results using the recommended coefficients. The RMSE, MAE, and MRE results for maize under drought stress during two full growth periods were 1.18 mm/day, 0.98 mm/day, and 13.92%, respectively. These results were higher than maize without drought stress, but better than the estimated results based on FAO-56 recommended values. Therefore, maize evapotranspiration estimation under drought stress using the dual crop coefficient approach and genetic algorithm was reasonable and reliable. This study provides a theoretical basis for developing suitable regional irrigation programs and decreasing losses due to agricultural drought.


Assuntos
Secas , Transpiração Vegetal/fisiologia , Zea mays/fisiologia , Irrigação Agrícola , Algoritmos , China , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/fisiologia , Cinética , Modelos Biológicos , Estações do Ano , Estresse Fisiológico , Zea mays/crescimento & desenvolvimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-31366071

RESUMO

Due to the importance and complexity of water resources regulations in the pond irrigation systems of the Jiang-Huai hilly regions, a water allocation simulation model for pond irrigation districts based on system simulation theory was developed in this study. To maximize agricultural irrigation benefits while guaranteeing rural domestic water demand, an optimal water resources regulation model for pond irrigation districts and a simulation-based optimal water resources regulation technology system for the pond irrigation system were developed. Using this system, it was determined that the suitable pond coverage rate (pond capacity per unit area) was 2.92 × 105 m3/km2. Suitable water supply and operational rules for adjusting crop planting structure were also developed the water-saving irrigation method and irrigation system. To guarantee rural domestic water demand, the multi-year average total irrigation water deficit of the study area decreased by 4.66 × 104 m3/km2; the average multi-year water deficit ratio decreased from 20.40% to 1.18%; the average multi-year irrigation benefit increased by 1.11 × 105 RMB (16,128$)/km2; and the average multi-year revenue increased by 6.69%. Both the economic and social benefits were significant. The results of this study provide a theoretical basis and technological support for comprehensive pone governance in the Jiang-Huai hilly regions and promote the establishment of a water allocation scheme and irrigation system for pond irrigation districts, which have practical significance and important application value.


Assuntos
Irrigação Agrícola/métodos , Lagoas , Recursos Hídricos , Abastecimento de Água , Antídotos , China , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...