Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 255: 128077, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37977470

RESUMO

This study focused on elucidating the non-covalent interactions between hemp seed globulin (GLB) and two hemp seed phenolic compounds, Cannabisin A (CA) and Cannabisin B (CB), and to explore these interactions on the protein's structure, conformation, and functionality. Fluorescence quenching and thermodynamic analysis revealed that static quenching governed non-covalent interaction processes, with hydrogen bonds and van der Waals forces functioning as major forces. This was further substantiated by molecular docking studies. The binding affinity order was CA > CB, indicating that the specific phenolic compound had a notable impact on the binding affinity. Furthermore, when complexed with CA, Tyr and Trp residues were exposed to a more hydrophilic environment than when complexed with CB. It was noted that the complexation with either CA or CB consistently affects GLB's secondary structure, particle size, and ζ-potential. GLB treated with the phenolic compounds exhibited enhanced ABTS and DPPH scavenging activities and improved digestibility compared to untreated GLB. Furthermore, the non-covalent interactions significantly increased CA's water solubility, highlighting GLB as a promising natural carrier for hydrophobic bioactive components. These findings hold potential implications for enhancing hemp seed protein applications within the food industry by positively influencing its functional properties and bioactivity.


Assuntos
Cannabis , Globulinas , Cannabis/química , Simulação de Acoplamento Molecular , Fenóis/análise , Digestão , Sementes/química
2.
Int J Biol Macromol ; 256(Pt 1): 128380, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000582

RESUMO

This study develops hemp seed globulin (GLB)-alginate (ALG) nanoparticles (GANPs) for Cannabisin A (CA) stabilization under environmental stress and during pepsin digestion. The optimal GLB: ALG mass ratio of 1: 1.5 was determined for GANPs formation at pH 3.5, resulting in a high yield of 95.13 ± 0.91 %, a ζ-potential of -35.73 ± 1.04 mV, a hydrodynamic diameter of 470.67 ± 11.36 nm, and a PDI of 0.298 ± 0.016. GANPs were employed to encapsulate CA, achieving a high loading capacity of 13.48 ± 0.04 µg mg-1. FTIR analysis demonstrated that the formation of CA-GLB-ALG nanoparticles (CGANPs) involves electrostatic interactions, hydrogen bonding, and hydrophobic interactions. XRD and DSC analyses revealed that CA is amorphous within the CGANPs. CGANPs demonstrated remarkable dispersion stability as well as resistance to high ionic strength and high-temperature treatments, indicating their potential as efficient hydrophobic drug-delivery vehicles. When compared to free CA, CA coated within CGANPs displayed greater DPPH/ABTS scavenging activity. Furthermore, the ALG-shelled nanoparticles protected GLB from pepsin digestion and slowed the release of CA throughout the release process, extending their stay on the intestinal wall mucosa. These findings imply that CGANPs is an ideal delivery vehicle for CA as they may expand the application of CA in food items.


Assuntos
Cannabis , Globulinas , Nanopartículas , Antioxidantes/farmacologia , Antioxidantes/química , Alginatos/química , Pepsina A , Nanopartículas/química
3.
J Food Sci ; 88(1): 537-551, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36524844

RESUMO

In the present study, we investigated the protection of hemp seed polyphenols on human umbilical vein endothelial cells (HUVEC) from H2 O2 -mediated oxidative stress injury. Fractions with different polarities were obtained by separating the hemp seed extract using HPD300 macroporous resin-packed column. The fraction, desorbed by 50% ethanol, is rich in polyphenol (789.51 ± 21.92 mg GAE/g) and has the highest antioxidant activity in vitro. HPLC-QTOF-MS/MS identified the main polyphenol components in hemp seed shells: 4 hydroxycinnamic acid amides and 15 lignanamides. The protective effects of hemp seed polyphenol against oxidative-stress injury in HUVEC cells were evaluated by cell viability, intracellular antioxidant parameters, and cell apoptosis assay. After HUVEC cells were precultured with 50 µg/ml hemp seed polyphenols, the cell viability increased significantly from 53.07 ± 2.46% (model group) to 80.65 ± 1.32% (p < 0.01). In addition, the pretreatment of HUVEC cells with polyphenol could substantially increase their intracellular superoxide dismutase activity and reduce their intracellular reactive oxygen species level, malondialdehyde content, and lactate dehydrogenase leakage index. These findings demonstrate the defensive potential of hemp seed polyphenol in reducing the incidence of cardiovascular disease. PRACTICAL APPLICATION: Hemp seed shell waste is produced while producing hemp seed kernel and has abundant phenolic compounds. This research showed that hemp seed polyphenol has potent antioxidant activity in vitro and protects HUVEC cells against H2 O2 -induced oxidative stress injury, suggesting that hemp seed polyphenol has the defensive potential to reduce the incidence of cardiovascular disease. These results indicated that polyphenol separated from hemp seed shells is valuable for further research and development, which will improve the utilization rate of hemp seed.


Assuntos
Cannabis , Doenças Cardiovasculares , Humanos , Antioxidantes/farmacologia , Polifenóis/farmacologia , Células Endoteliais da Veia Umbilical Humana , Espectrometria de Massas em Tandem , Estresse Oxidativo , Espécies Reativas de Oxigênio , Sementes , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...