Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174686, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992360

RESUMO

Soil net nitrogen mineralization (Nmin), a microbial-mediated conversion of organic to inorganic N, is critical for grassland productivity and biogeochemical cycling. Enhanced atmospheric N deposition has been shown to substantially increase both plant and soil N content, leading to a major change in Nmin. However, the mechanisms underlying microbial properties, particularly microbial functional genes, which drive the response of Nmin to elevated N deposition are still being discussed. Besides, it is still uncertain whether the relative importance of plant carbon (C) input, microbial properties, and mineral protection in regulating Nmin under continuous N addition would vary with the soil depth. Here, based on a 13-year multi-level field N addition experiment conducted in a typical grassland on the Loess Plateau, we elucidated how N-induced changes in plant C input, soil physicochemical properties, mineral properties, soil microbial community, and the soil Nmin rate (Rmin)-related functional genes drove the responses of Rmin to N addition in the topsoil and subsoil. The results showed that Rmin increased significantly in both topsoil and subsoil with increasing rates of N addition. Such a response was mainly dominated by the rate of soil nitrification. Structural equation modeling (SEM) revealed that a combination of microbial properties (functional genes and diversity) and mineral properties regulated the response of Rmin to N addition at both soil depths, thus leading to changes in the soil N availability. More importantly, the regulatory impacts of microbial and mineral properties on Rmin were depth-dependent: the influences of microbial properties weakened with soil depth, whereas the effects of mineral protection enhanced with soil depth. Collectively, these results highlight the need to incorporate the effects of differential microbial and mineral properties on Rmin at different soil depths into the Earth system models to better predict soil N cycling under further scenarios of N deposition.

2.
Plant Cell ; 36(6): 2160-2175, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38412459

RESUMO

Synergistic optimization of key agronomic traits by traditional breeding has dramatically enhanced crop productivity in the past decades. However, the genetic basis underlying coordinated regulation of yield- and quality-related traits remains poorly understood. Here, we dissected the genetic architectures of seed weight and oil content by combining genome-wide association studies (GWAS) and transcriptome-wide association studies (TWAS) using 421 soybean (Glycine max) accessions. We identified 26 and 33 genetic loci significantly associated with seed weight and oil content by GWAS, respectively, and detected 5,276 expression quantitative trait loci (eQTLs) regulating expression of 3,347 genes based on population transcriptomes. Interestingly, a gene module (IC79), regulated by two eQTL hotspots, exhibited significant correlation with both seed weigh and oil content. Twenty-two candidate causal genes for seed traits were further prioritized by TWAS, including Regulator of Weight and Oil of Seed 1 (GmRWOS1), which encodes a sodium pump protein. GmRWOS1 was verified to pleiotropically regulate seed weight and oil content by gene knockout and overexpression. Notably, allelic variations of GmRWOS1 were strongly selected during domestication of soybean. This study uncovers the genetic basis and network underlying regulation of seed weight and oil content in soybean and provides a valuable resource for improving soybean yield and quality by molecular breeding.


Assuntos
Estudo de Associação Genômica Ampla , Glycine max , Locos de Características Quantitativas , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Locos de Características Quantitativas/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Óleos de Plantas/metabolismo , Óleo de Soja/metabolismo , Óleo de Soja/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Multiômica
3.
Materials (Basel) ; 16(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959654

RESUMO

In this study, Cu-10 wt% Fe alloy in as-cast state was modified using friction stir processing (FSP). The microstructure evolution of Cu-10 wt% Fe alloys in different states was characterized in detail using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The results show that due to dynamic recrystallization, the FSPed Cu-10 wt% Fe alloy obtained a uniformly equiaxed ultrafine microstructure with low density of dislocation, high proportion of high-angle grain boundaries (HAGBs), and high degree of recrystallization. Fine equiaxed grains with an average size of 0.6 µm were produced after FSP. Many fine-precipitate Fe-phases with an average size of 20 nm were uniformly distributed in the Cu matrix. The FSPed samples possessed excellent mechanical properties, such as high Vickers hardness (163.5 HV), ultimate tensile strength (538.5 MPa), and good elongation (16%). This single-pass FSP method does not require subsequent aging treatment and provides a simple and efficient way to improve the properties of Cu-Fe alloys.

4.
RSC Adv ; 13(41): 28703-28712, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37790102

RESUMO

The design of new gas sensors and scavengers of volatile organic compounds (VOCs) is desirable for VOC enriching, separation and utilization. Herein, first-principles methods were performed to investigate the potential of C6N7 monolayers as highly efficient sensors and scavengers for selective VOCs (toluene, benzene, vinyl chloride, ethane, methanal, acetone, ethanol, and acetaldehyde). The physisorption of toluene, benzene, acetone, ethanol, acetaldehyde, and methanal has relatively high adsorption strength and can significantly tune the electronic properties and work function (Φ) of the C6N7, indicating that the C6N7 monolayer is highly sensitive and selective to these VOC gases. In addition, the desorption time of benzene, acetone, ethanol, acetaldehyde, and methanal is about 3, 0.4, 2.0 × 10-2, 3.0 × 10-2, and 3.6 × 10-5 s at 300 K, respectively, indicating that the C6N7-based sensor has high reusability at room temperature. The recovery time of toluene was about 7.8 × 102 s at 300 K, showing disposable toluene gas sensing of the monolayer. Our work confirms that the C6N7 monolayer as a resistance-type and Φ-type gas sensor and scavenger is highly sensitive, selective and reusable for VOCs (benzene, acetone, ethanol, acetaldehyde, and methanol), but is a disposable toluene gas sensor and scavenger at room temperature.

5.
Phys Chem Chem Phys ; 25(42): 28807-28813, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850498

RESUMO

Hydrogen energy is very important as a new clean energy source to combat the growing environmental problems. In this regard, novel photocatalyst materials for water splitting have a wide range of applications. Using first principles calculations, we theoretically studied three orthorhombic group-IVB nitride halide monolayers, Hf2N2Br2, Janus HfZrN2Br2 and Janus Hf2N2ClBr. The energy, dynamic and thermal stabilities are demonstrated for all three monolayers. Using the HSE hybrid functional, the calculations reveal that they are direct band gap semiconductors with suitable band edge positions, good optical absorptions, and anisotropic carrier mobilities, which makes them promising for water splitting applications. Importantly, the photogenerated carriers provide enough driving force to trigger the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) within wide pH ranges, and then overall water splitting can be achieved spontaneously. We conclude that orthorhombic group-IVB nitride halide monolayers have potential applications in photocatalytic nanodevices.

6.
Materials (Basel) ; 16(14)2023 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512454

RESUMO

To study the effects of Fe content and cold drawing strain on the microstructure and properties, Cu-Fe alloys were prepared via powder metallurgy and hot extrusion. Scanning electron microscopy was applied to observe the Fe phase, and the ultimate tensile strength was investigated using a universal material testing machine. Alloying with an Fe content below 10 wt.% formed a spherically dispersed Fe phase via the conventional nucleation and growth mechanism, whereas a higher Fe content formed a water-droplet-like Fe phase via the spinodal decomposition mechanism in the as-extruded Cu-Fe alloy. Further cold drawing induced the fiber structure of the Fe phase (fiber strengthening), which could not be destroyed by subsequent annealing. As the Fe content increased, the strength increased but the electrical conductivity decreased; as the cold drawing strain increased, both the strength and the electrical conductivity roughly increased, but the elongation roughly decreased. After thermal-mechanical processing, the electrical conductivity and strength of the Cu-40Fe alloy could reach 51% IACS and 1.14 GPa, respectively. This study can provide insight into the design of high-performance Cu-Fe alloys by tailoring the size and morphology of the Fe phase.

8.
World J Clin Cases ; 11(14): 3275-3281, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37274040

RESUMO

BACKGROUND: Here, we present a unique case of mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome, which initially appeared to be autoimmune encephalitis and was ultimately confirmed as MELAS with the mitochondrial DNA 3243A>G mutation. CASE SUMMARY: A 58-year-old female presented with acute-onset speech impediment and auditory hallucinations, symmetrical bitemporal lobe abnormalities, clinical and laboratory findings, and a lack of relevant prodromal history, which suggested diagnosis of autoimmune encephalitis. Further work-up, in conjunction with the patient's medical history, family history, and lactate peak on brain lesions on magnetic resonance imaging, suggested a mitochondrial disorder. Mitochondrial genome analysis revealed the m.3243A>G variant in the MT-TL1 gene, which led to a diagnosis of MELAS syndrome. CONCLUSION: This case underscores the importance of considering MELAS as a potential cause of autoimmune encephalitis even if patients are over 40 years of age, as the symptoms and signs are atypical for MELAS syndrome.

9.
J Phys Condens Matter ; 35(14)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36689775

RESUMO

Prediction and synthesis of two-dimensional high transition temperature (TC) superconductors is an area of extensive research. Based on calculations of the electronic structures and lattice dynamics, we predict that graphene-like layered monolayer LiC12is aπ-electrons mediated Bardeen-Cooper-Schrieffer-type superconductor. Monolayer LiC12is theoretically stable and expected to be synthesized experimentally. From the band structures and the phonon dispersion spectrum, it is found that the saddle point ofπ-bonding bands induces large density of states at the Fermi energy level. There is strongly coupled between the vibration mode in the in-plane direction of the lithium atoms and theπ-electrons of carbon atoms, which induces the high-TCsuperconductivity in LiC12. TheTCcan reach to 41 K under an applied 10% biaxial tensile strain based on the anisotropic Eliashberg equation. Our results show that monolayer LiC12is a good candidate asπ-electrons mediated electron-phonon coupling high-TCsuperconductor.

10.
ACS Omega ; 7(50): 46440-46451, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570267

RESUMO

The extensive applications of two-dimensional (2D) transition metal disulfides in gas sensing prompt us to explore the adsorption, electronic, optical, and gas-sensing properties of the pure and Pd-decorated GeS2 monolayers interacting with NO2, NO, CO2, CO, SO2, NH3, H2S, HCN, HF, CH4, N2, and H2 gases by using first-principles methods. Our results showed that the pure GeS2 monolayer is not appropriate to develop gas sensors. The stability of the Pd-decorated GeS2 (Pd-GeS2) monolayer was determined by binding energy, transition state theory, and molecular dynamics simulations, and the Pd decoration has a significant effect on adsorption strength and the change in electronic properties (especially electrical conductivity). The Pd-GeS2 monolayer-based sensor has relatively high sensitivity toward NO and NO2 gases with moderate recovery time. In addition, the adsorption of NO and NO2 can conspicuously change the optical properties of the Pd-GeS2 monolayer. Therefore, the Pd-GeS2 monolayer is predicted to be reusable and a highly sensitive (optical) gas sensing material for the detection of NO and NO2.

11.
J Phys Chem Lett ; 13(44): 10297-10304, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305806

RESUMO

The valley-polarized quantum anomalous Hall effect (VP-QAHE) in topological materials, which usually is induced by applying external manipulations, has attracted intensive attention. Here, we predict the formation and regulation of the intrinsic VP-QAHE in ferromagnetic Janus monolayer Fe2SSe. Spontaneous valley polarization (VP) appears without external manipulations due to the Janus structure in monolayer Fe2SSe. The spontaneous VP in addition to the nonzero Chern number in Fe2SSe confirm the intrinsic VP-QAHE. Besides, the topologically protected chiral-spin-valley locking edge states can be regulated by reversing the magnetization. Topological phase transitions between metal, half-metal, topological insulator, and ferrovalley phases can be obtained by applying biaxial strains in Fe2SSe, and the nontrivial band gap reaches up to 441 meV. Also, the topological phase with the VP-QAHE is robust under certain conditions. Both the intrinsic VP-QAHE and controllable topological phase transitions can be achieved in Janus monolayer Fe2SSe, which provides an avenue for the applications of dissipationless valleytronic devices.

12.
Materials (Basel) ; 15(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806589

RESUMO

This work was mainly focused on the processing-parameter-related microstructure and properties of ultrafine WC-10Co-0.4VC-0.5Cr3C2 cemented carbide. The samples were prepared via a spark plasma sintering (SPS) technique using nano WC and Co powders and the corresponding inhibitor VC and Cr3C2 powders. The influence of the processing process on the microstructure and mechanical properties of ultrafine-grained cemented carbide was investigated under different ball-milling times and sintering temperatures. The results showed that the grain size of WC decreased with increasing ball-milling time and decreasing sintering temperature and that the specific gravity of ε-Co increased with increasing ball-milling time. The hardness of cemented carbide increased with increasing ball-milling time and decreased with increasing sintering temperature due to the corresponding variation in grain size and the relative density of samples. The transverse fracture strength (TRS) was mainly affected by ball-milling time. The increase in ball-milling time led to decreased TRS values, mainly ascribed to the formation of WC particle agglomeration and the decreased WC-Co eutectic temperature. In addition, temperature changes were found to have little effect on TRS. The samples sintered at 1250 °C with a ball-milling time of 60 h had comprehensive mechanical properties. Their average grain size, relative density, hardness, and TRS were 355.5 nm, 95.79%, 2035.5 kg/mm2, and 2155.99 MPa, respectively.

13.
Appl Biochem Biotechnol ; 194(11): 5236-5254, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35727407

RESUMO

This paper presents an in-depth study and analysis of the assessment of hemorrhagic transformation and prognostic outcome after thrombolysis in acute cerebral infarction using a combined test and evaluates its clinical value. The ischemic tissue hemodynamic changes were compared and analyzed by the combined application of magnetic resonance conventional examination. Single-factor and multi-factor Logistic regression analysis was applied to the model group samples to determine the independent influencing factors of hemorrhage and to construct a risk prediction model. The Hosmer-Lemeshow chi-square test was used to test the fit of the model, and the area under the ROC curve was used to test the discriminatory ability of the model. The area under the ROC curve was used to test the discriminatory ability of the model. The main purpose of this study was to investigate the clinical diagnostic value of the combined D-D and Hcy and test for the early detection of patients with acute cerebral infarction disease. There was no significant correlation between single PWI-ASPECTS and clinical prognostic MRS score, which may be related to the site and volume of initial diffusion restriction; the percentage of the mismatched area between DWI-PWI and clinical prognostic mRS score was significantly correlated, which helps clinicians to assess the therapeutic effect of non-thrombolytic therapy and provide an important basis for clinical selection of appropriate interventions in the subacute phase of stroke. The sensitivity of D-D, Hcy, and cTnI in the acute cerebral infarction group was 59.4%, 79.6%, and 49.5%, and the specificity was 73.5%, 70.5%, and 91.1%, respectively, with the area under the curve of 0.606, 0.729, and 0.521. The sensitivity, specificity, and area under the curve of the combined assay were higher than those of the single assay. The detection level of high-risk group was the highest, followed by the low-risk group. Pearson correlation analysis suggests that there is a significant correlation between serum UA and MM-9 level and grace score.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Metaloproteinase 9 da Matriz , Prognóstico , Hemorragia/tratamento farmacológico , Infarto Cerebral/diagnóstico por imagem , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Terapia Trombolítica
15.
Exploration (Beijing) ; 2(6): 20220065, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37324798

RESUMO

Reducing the high operation temperature of gas sensor to room temperature (RT) have attracted intense interests for its distinct preponderances, including energy-saving and super stability, which presents great prospects in commercial application. The exciting strategies for RT gas sensing, such as unique materials with activated surface or light activation, do not directly modulate the active ions for gas sensing, limiting the RT gas sensing performances. Here, an active-ion-gated strategy has been proposed for RT gas sensing with high performance and low power consumption, in which gas ions in triboelectric plasma are introduced into metal oxide semiconductor (MOS) film to act as both floating gate and active sensing ions. The active-ion-gated ZnO nanowires (NWs) array shows a sensitivity of 38.3% to 10 ppm acetone gas at RT, and the maximum power consumption is only 4.5 mW. At the same time, the gas sensor exhibits excellent selectivity to acetone. More importantly, the response (recovery) time of this sensor is as low as 11 s (25 s). It is found that OH-(H2O)4 ions in plasma are the key for realizing RT gas sensing ability, and an accompanied resistive switch is also observed. It is considered that the electron transfer between OH-(H2O)4 and ZnO NWs will forms a hydroxyl-like intermediate state (OH*) on the top of Zn2+, leading to the band bending of ZnO and activating the reactive O2 - ions on the oxygen vacancies. The active-ion-gated strategy proposed here present a novel exploration to achieving RT gas sensing performance of MOS by activating sensing properties at the scale of ions or atoms.

16.
Nanomaterials (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34947685

RESUMO

van der Waals heterostructures (vdWHs) can exhibit novel physical properties and a wide range of applications compared with monolayer two-dimensional (2D) materials. In this work, we investigate the electronic and optical properties of MoSTe/MoGe2N4 vdWH under two different configurations using the VASP software package based on density functional theory. The results show that Te4-MoSTe/MoGe2N4 vdWH is a semimetal, while S4-MoSTe/MoGe2N4 vdWH is a direct band gap semiconductor. Compared with the two monolayers, the absorption coefficient of MoSTe/MoGe2N4 vdWH increases significantly. In addition, the electronic structure and the absorption coefficient can be manipulated by applying biaxial strains and changing interlayer distances. These studies show that MoSTe/MoGe2N4 vdWH is an excellent candidate for high-performance optoelectronic devices.

17.
J Phys Condens Matter ; 34(7)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34768243

RESUMO

Inspired by the new progress in the research field of two-dimensional valleytronics materials, we propose a new class of transition metal halides, i.e. H-ZrX2(X = Cl, Br, I), and investigated their valleytronics properties under the first-principles calculations. It harbors the spin-valley coupling at K and K' points in the top of valence band, in which the valley spin splitting of ZrI2can reach up to 115 meV. By carrying out the strain engineering, the valley spin splitting and Berry curvature can be effectively tuned. The long-sought valley polarization reaches up to 108 meV by doping Cr atom, which corresponds to the large Zeeman magnetic field of 778 T. Furthermore, the valley polarization in ZrX2can be lineally adjusted or flipped by manipulating the magnetization orientation of the doped magnetic atoms. All the results demonstrate the well-founded application prospects of single-layer ZrX2, which can be considered as great candidate for the development of valleytronics and spintronics.

18.
Appl Opt ; 60(20): 5936-5941, 2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34263815

RESUMO

Materials engineering is generally regarded as one of the most effective methods in the construction of photocatalysts, but it still faces many challenges. In this context, we designed and prepared a three-dimensional (3D) heterostructure of nanowires (NWs) formed by Cu2O core and an Au shell. The Cu2O-Au NWs not only show fine photocatalytic ability but also proved to have Fenton-like chemical properties and can be used as a hydrogen peroxide sensor. Moreover, this heterostructure realizes an integration of catalytic efficiency, retrievability, and versatility. In further consideration of the facile preparation process and low-cost material source of the structure, the Cu2O-Au NWs show a promising application prospect in the field of multifunctional photocatalysts.

19.
Micromachines (Basel) ; 12(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202878

RESUMO

The electronic structure and spin polarization properties of monolayer GaP3 induced by transition metal (TM) doping were investigated through a first-principles calculation based on density functional theory. The calculation results show that all the doped systems perform spin polarization properties, and the Fe-doped system shows the greatest spin polarization property with the biggest magnetic moment. Based on the analysis from the projected density of states, it was found that the new spin electronic states originated from the p-d orbital couplings between TM atoms and GaP3 lead to spin polarization. The spin polarization results were verified by calculating the spin density distributions and the charge transfer. It is effective to introduce the spin polarization in monolayer GaP3 by doping TM atoms, and our work provides theoretical calculation supports for the applications of triphosphide in spintronics.

20.
Opt Lett ; 45(12): 3292-3295, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538965

RESUMO

Platinum is reported as the main component of the substrate in surface plasmon microscopy of the metal-dielectric interface for small-angle measurements. In the absence of a narrow dip in the angular spectrum of platinum, the refractive index of the dielectric medium or the thickness of a deposited layer is proven deducible from the observed sharp peak, close to the critical angle. The sensitivities of refractive index and thickness measurements using platinum are compared with that of a gold surface plasmon resonance chip. Furthermore, the thickness of a structured layer of (3-Aminopropyl)triethoxysilane on the platinum substrate is measured to be 0.7 nm, demonstrating the high sensitivity of the technique.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...