Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38998028

RESUMO

This experiment was conducted to study the protective effects of dietary Chinese gallotannins (CGT) supplementation against Escherichia coli lipopolysaccharide (LPS)-induced intestinal injury in broilers. Four hundred and fifty healthy Arbor Acres broilers (one-day-old) were randomly divided into three groups: (1) basal diet (CON group), (2) basal diet with LPS challenge (LPS group), and (3) basal diet supplemented with 300 mg/kg CGT as well as LPS challenge (LPS+CGT group). The experiment lasted for 21 days. Intraperitoneal LPS injections were administered to broilers in the LPS group and the LPS+CGT group on days 17, 19, and 21 of the trial, whereas the CON group received an intraperitoneal injection of 0.9% physiological saline. Blood and intestinal mucosa samples were collected 3 h after the LPS challenge. The results showed that LPS administration induced intestinal inflammation and apoptosis and damaged small intestinal morphology and structure in broilers. However, dietary supplementation with CGT alleviated the deleterious effects on intestinal morphology and barrier integrity caused by the LPS challenge, while also reducing intestinal apoptosis and inflammation, enhancing intestinal antioxidant capacity, and increasing cecal microbial alpha diversity in the LPS-challenged broilers. Therefore, our findings demonstrated that a 300 mg/kg CGT addition could improve intestinal morphology and gut barrier structure, as well as maintaining bacterial homeostasis, in broilers exposed to LPS. This might partially be attributed to the reduced cell apoptosis, decreased inflammatory response, and enhanced antioxidant capacity in the small intestinal mucosa.

2.
Front Vet Sci ; 10: 1259142, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954663

RESUMO

This study aimed to investigate the impacts of dietary supplementation with Galla chinensis tannins (GCT) on the growth performance, antioxidant capacity, and lipid metabolism of young broilers. Overall, a total of 216 healthy 1 day-old broilers were randomly allocated to CON group and GCT group, and provided with a basal diet or a basal diet added with 300 mg/kg microencapsulated GCT, respectively, in a 21 days trial. Our findings indicated that dietary GCT addition had no significant effects (p > 0.05) on growth performance. However, GCT supplementation led to a significant reduction in the total cholesterol (TC) concentration in the serum and liver (p < 0.05). Furthermore, GCT supplementation significantly increased the ratios of high-density lipoprotein (HDL) to low-density lipoprotein (LDL) and HDL to TC in the serum, in addition to elevating the activities of enzymes related to lipid metabolism in the liver (p < 0.05). Dietary GCT addition also improved the antioxidant capacity of the broilers, as evidenced by a significant decrease in the concentration of malondialdehyde in serum and liver (p < 0.05). Additionally, the GCT group exhibited significantly increased expressions of hepatic genes associated with antioxidant enzymes (HO-1, GPX1, SOD2, SIRT1, CPT-1, and PPARα) (p < 0.05), while the mRNA expression of SREBP-1 was significantly decreased (p < 0.05) compared with the CON group. In conclusion, dietary addition of 300 mg/kg microencapsulated GCT improved the antioxidant status and lipid metabolism of broilers without affecting their growth performance.

4.
Nature ; 622(7983): 619-626, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37758950

RESUMO

Postnatal maturation of cardiomyocytes is characterized by a metabolic switch from glycolysis to fatty acid oxidation, chromatin reconfiguration and exit from the cell cycle, instating a barrier for adult heart regeneration1,2. Here, to explore whether metabolic reprogramming can overcome this barrier and enable heart regeneration, we abrogate fatty acid oxidation in cardiomyocytes by inactivation of Cpt1b. We find that disablement of fatty acid oxidation in cardiomyocytes improves resistance to hypoxia and stimulates cardiomyocyte proliferation, allowing heart regeneration after ischaemia-reperfusion injury. Metabolic studies reveal profound changes in energy metabolism and accumulation of α-ketoglutarate in Cpt1b-mutant cardiomyocytes, leading to activation of the α-ketoglutarate-dependent lysine demethylase KDM5 (ref. 3). Activated KDM5 demethylates broad H3K4me3 domains in genes that drive cardiomyocyte maturation, lowering their transcription levels and shifting cardiomyocytes into a less mature state, thereby promoting proliferation. We conclude that metabolic maturation shapes the epigenetic landscape of cardiomyocytes, creating a roadblock for further cell divisions. Reversal of this process allows repair of damaged hearts.


Assuntos
Reprogramação Celular , Ácidos Graxos , Coração , Regeneração , Animais , Camundongos , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Hipóxia Celular , Proliferação de Células , Metabolismo Energético , Ativação Enzimática , Epigênese Genética , Ácidos Graxos/metabolismo , Coração/fisiologia , Histona Desmetilases/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Miocárdio , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oxirredução , Regeneração/fisiologia , Traumatismo por Reperfusão , Transcrição Gênica
5.
Curr Opin Genet Dev ; 82: 102098, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37595409

RESUMO

Ischemic heart injury causes death of cardiomyocyte (CM), formation of a fibrotic scar, and often adverse cardiac remodeling, resulting in chronic heart failure. Therapeutic interventions have lowered myocardial damage and improved heart function, but pharmacological treatment of heart failure has only shown limited progress in recent years. Over the past two decades, different approaches have been pursued to regenerate the heart, by transplantation of newly generated CMs derived from pluripotent stem cells, generation of new CMs by reprogramming of cardiac fibroblasts, or by activating proliferation of preexisting CMs. Here, we summarize recent progress in the development of strategies for in situ generation of new CMs, review recent advances in understanding the underlying mechanisms, and discuss the challenges and future directions of the field.


Assuntos
Insuficiência Cardíaca , Células-Tronco Pluripotentes , Humanos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/terapia , Miócitos Cardíacos , Cicatriz , Fibroblastos
6.
Front Vet Sci ; 10: 1173494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576836

RESUMO

This study aims to investigate the effects of macleaya extract and glucose oxidase combination (MGO) on growth performance, antioxidant capacity, immune function, and cecal microbiota in piglets. A total of 120 healthy 28-day-old weaned piglets were randomly divided into two treatments of six replicates. Piglets were either received a basal diet or a basal diet supplemented with 250 mg/kg MGO (2 g/kg sanguinarine, 1 g/kg chelerythrine, and 1 × 106 U/kg glucose oxidase). The results showed that MGO supplementation increased average daily gain (ADG) and decreased feed:gain ratio (F/G) (p < 0.05). MGO increased serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity, and immunoglobulin G (IgG) content (p < 0.05), but decreased malondialdehyde (MDA) and interleukin 1ß (IL-1ß) content (p < 0.05). The jejunal mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (HO-1) were increased in MGO group (p < 0.05), while that of kelch like ECH associated protein 1 (Keap1) was decreased (p < 0.05). The Firmicutes was significantly increased at phylum levels in MGO group (p < 0.05). In conclusion, 250 mg/kg MGO improved piglet growth, and regulated intestinal flora of piglets, which provided a theoretical basis for MGO as an alternative additive for antibiotics.

7.
iScience ; 26(4): 106440, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37035004

RESUMO

The main cause of high mortality in cancer patients is tumor metastasis. Exploring the underlying mechanism of tumor metastasis is of great significance for clinical treatments. Here, we identify the transcription factor Apt/FSBP is a suppressor for tumor metastasis. In Drosophila wing disc, knockdown of apt is able to trigger cell migration, whereas overexpression of apt hampers scrib-RNAi-induced tumor cell migration. Further studies show that loss of apt promotes cell migration through activating the JNK pathway. To investigate the role of FSBP, the homolog of Apt in mammals, we construct Fsbp liver-specific knockout mice. Knockout of Fsbp in liver does not cause any detectable physiological defects, but predisposes to tumorigenesis on DEN and CCl4 treatment. In addition, loss of Fsbp accelerates tumor metastasis from liver to diaphragm. Taken together, this study uncovers FSBP is a novel tumor suppressor, and provides it as a considerable drug target for tumor treatment.

8.
Front Vet Sci ; 10: 1126911, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865438

RESUMO

Herein, Galla Chinensis tannin (GCT) was examined for its influence on preventing lipopolysaccharide (LPS)-induced liver damage in broiler chickens. Approximately 486 one-day-old healthy broilers were randomly allocated to 3 treatment groups (control, LPS, and LPS + GCT). The control and LPS groups were fed a basal diet and the LPS+GCT group was fed the basal diet supplemented with 300 mg/kg GCT. LPS was intraperitoneally injected (1 mg/kg body weight BW) in broilers in the LPS and LPS+GCT groups at 17, 19, and 21 days of age. The results manifested that dietary GCT addition attenuated LPS-induced deleterious effects on serum parameters and significantly increased serum immunoglobulin and complement C3 concentrations relative to the control and LPS groups. Dietary supplementation of GCT inhibited LPS-induced increase in broiler hepatic inflammatory cytokines, caspases activities, and TLR4/NF-κB pathway-related gene mRNA expression. Therefore, 300 mg/kg GCT addition to the diet improved the immune function of broilers and inhibit liver inflammation by blocking the TLR4/NF-κB pathway. Our findings provide support for the application of GCT in poultry production.

9.
Microorganisms ; 11(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36838201

RESUMO

A total of 24,000 healthy 1-day-old Arbor Acres broilers with similar initial weights were used in this study and fed a basal diet supplemented with 0, 400 and 800 mg/kg isoleucine (Ile), denoted CON, ILE400 and ILE800, respectively. Results revealed that the final body weight, average daily weight gain, and eviscerated carcass rate, of broiler chickens in the ILE400 group were significantly higher than in other groups (p < 0.05). In addition, the ILE400 and ILE800 groups had a lower feed conversion rate and a higher survival rate and breast muscle rate (p < 0.05), while the abdominal fat rate was significantly lower than the CON group (p < 0.05). There were significantly lower serum concentrations of UREA, glucose (GLU) and total cholesterol (TCHO) in the ILE400 and ILE800 groups than in the CON group (p < 0.05); glutathione peroxidase (GSH-Px) activity was significantly higher in the ILE400 group than in the other groups, and tumor necrosis factor-alpha (TNF-α) concentration was considerably lower than in other groups (p < 0.05). Moreover, interleukin (IL)-10 concentration in the ILE800 group was significantly higher than in the other groups (p < 0.05). The ILE400 group significantly down-regulated the mRNA expressions of fatty-acid synthase (FASN) and solid alcohol regulatory element binding protein 1c (SREBP1c), and significantly up-regulated the mRNA expressions of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), lipoprotein lipase (LPL) and sirtuin1 (Sirt1) (p < 0.05). The ILE400 group had significantly higher intestinal villus height than the CON and ILE800 groups, while the ILE800 group had significantly lower intestinal villus height/crypt depth (p < 0.05). Furthermore, high-throughput sequencing showed that the Shannon index, and Verrucomicrobiota, Colidextribacter and Bacteroides abundances were significantly higher in the ILE400 group than in the CON group (p < 0.05). Interestingly, the ILE800 group reduced the Simpson index, phylum Firmicutes and Bacteroidota abundances (including genera Colidextribacter, Butyricicoccus, [Ruminococcus]_torques_group, Bacteroides, Alistipes, Barnesiella and Butyricimonas), and increased Proteobacteria and Cyanobacteria (including genera Dyella, Devosia, unidentified_Chloroplast and Hyphomicrobium) (p < 0.05). Overall, our study showed that adding 400 mg/kg Ile to the diet (diets total Ile levels at 1.01%, 0.90% and 0.87% during the starter, grower and finisher phases, respectively) increased production performance and improved the health status in broiler chickens.

10.
Nat Genet ; 55(1): 100-111, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539616

RESUMO

Generation of functional transcripts requires transcriptional initiation at regular start sites, avoiding production of aberrant and potentially hazardous aberrant RNAs. The mechanisms maintaining transcriptional fidelity and the impact of spurious transcripts on cellular physiology and organ function have not been fully elucidated. Here we show that TET3, which successively oxidizes 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) and other derivatives, prevents aberrant intragenic entry of RNA polymerase II pSer5 into highly expressed genes of airway smooth muscle cells, assuring faithful transcriptional initiation at canonical start sites. Loss of TET3-dependent 5hmC production in SMCs results in accumulation of spurious transcripts, which stimulate the endosomal nucleic-acid-sensing TLR7/8 signaling pathway, thereby provoking massive inflammation and airway remodeling resembling human bronchial asthma. Furthermore, we found that 5hmC levels are substantially lower in human asthma airways compared with control samples. Suppression of spurious transcription might be important to prevent chronic inflammation in asthma.


Assuntos
5-Metilcitosina , Asma , Humanos , 5-Metilcitosina/metabolismo , Imunidade Inata/genética , Inflamação/genética , Asma/genética , Metilação de DNA
11.
Nat Commun ; 13(1): 6907, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376321

RESUMO

Transcription replication collisions (TRCs) constitute a major intrinsic source of genome instability but conclusive evidence for a causal role of TRCs in tumor initiation is missing. We discover that lack of the H4K20-dimethyltransferase KMT5B (also known as SUV4-20H1) in muscle stem cells de-represses S-phase transcription by increasing H4K20me1 levels, which induces TRCs and aberrant R-loops in oncogenic genes. The resulting replication stress and aberrant mitosis activate ATR-RPA32-P53 signaling, promoting cellular senescence, which turns into rapid rhabdomyosarcoma formation when p53 is absent. Inhibition of S-phase transcription ameliorates TRCs and formation of R-loops in Kmt5b-deficient MuSCs, validating the crucial role of H4K20me1-dependent, tightly controlled S-phase transcription for preventing collision errors. Low KMT5B expression is prevalent in human sarcomas and associated with tumor recurrence, suggesting a common function of KMT5B in sarcoma formation. The study uncovers decisive functions of KMT5B for maintaining genome stability by repressing S-phase transcription via control of H4K20me1 levels.


Assuntos
Células-Tronco Adultas , Histona-Lisina N-Metiltransferase , Humanos , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Recidiva Local de Neoplasia , Fase S/genética , Instabilidade Genômica , Transformação Celular Neoplásica/genética , Células-Tronco Adultas/metabolismo , Replicação do DNA/genética
12.
Toxins (Basel) ; 14(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36287961

RESUMO

The aim of this study was to explore the effect of zearalenone (ZEA) exposure on uterine development in weaned gilts by quantitative proteome analysis with tandem mass spectrometry tags (TMT). A total of 16 healthy weaned gilts were randomly divided into control (basal diet) and ZEA3.0 treatments groups (basal diet supplemented with 3.0 mg/kg ZEA). Results showed that vulva size and uterine development index were increased (p < 0.05), whereas serum follicle stimulation hormone, luteinizing hormone and gonadotropin-releasing hormone were decreased in gilts fed the ZEA diet (p < 0.05). ZEA, α-zearalenol (α-ZOL) and ß-zearalenol (ß-ZOL) were detected in the uteri of gilts fed a 3.0 mg/kg ZEA diet (p < 0.05). The relative protein expression levels of creatine kinase M-type (CKM), atriopeptidase (MME) and myeloperoxidase (MPO) were up-regulated (p < 0.05), whereas aldehyde dehydrogenase 1 family member (ALDH1A2), secretogranin-1 (CHGB) and SURP and G-patch domain containing 1 (SUGP1) were down-regulated (p < 0.05) in the ZEA3.0 group by western blot, which indicated that the proteomics data were dependable. In addition, the functions of differentially expressed proteins (DEPs) mainly involved the cellular process, biological regulation and metabolic process in the biological process category. Some important signaling pathways were changed in the ZEA3.0 group, such as extracellular matrix (ECM)-receptor interaction, focal adhesion and the phosphoinositide 3-kinase−protein kinase B (PI3K-AKT) signaling pathway (p < 0.01). This study sheds new light on the molecular mechanism of ZEA in the uterine development of gilts.


Assuntos
Zearalenona , Animais , Feminino , Família Aldeído Desidrogenase 1 , Cromograninas , Creatina Quinase , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Neprilisina , Peroxidase , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Proteoma , Proteômica , Proteínas Proto-Oncogênicas c-akt , Sus scrofa , Suínos , Zearalenona/toxicidade
13.
Toxins (Basel) ; 14(10)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36287972

RESUMO

Zearalenone (ZEN), also known as the F-2 toxin, is a common contaminant in cereal crops and livestock products. This experiment aimed to reveal the changes in the proteomics of ZEN-induced intestinal damage in weaned piglets by tandem mass spectrometry tags. Sixteen weaned piglets either received a basal diet or a basal diet supplemented with 3.0 mg/kg ZEN in a 32 d study. The results showed that the serum levels of ZEN, α-zearalenol, and ß-zearalenol were increased in weaned piglets exposed to ZEN (p < 0.05). Zearalenone exposure reduced apparent nutrient digestibility, increased intestinal permeability, and caused intestinal damage in weaned piglets. Meanwhile, a total of 174 differential proteins (DEPs) were identified between control and ZEN groups, with 60 up-regulated DEPs and 114 down-regulated DEPs (FC > 1.20 or <0.83, p < 0.05). Gene ontology analysis revealed that DEPs were mainly involved in substance transport and metabolism, gene expression, inflammatory, and oxidative stress. The Kyoto Encyclopedia of Genes and Genomes analysis revealed that DEPs were significantly enriched in 25 signaling pathways (p < 0.05), most of which were related to inflammation and amino acid metabolism. Our study provides valuable clues to elucidate the possible mechanism of ZEN-induced intestinal injury.


Assuntos
Zearalenona , Animais , Suínos , Zearalenona/análise , Proteômica , Desmame , Aminoácidos
14.
Circ Res ; 131(7): 580-597, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36000401

RESUMO

BACKGROUND: ADAR1 (adenosine deaminase acting on RNA-1)-mediated adenosine to inosine (A-to-I) RNA editing plays an essential role for distinguishing endogenous from exogenous RNAs, preventing autoinflammatory ADAR1 also regulates cellular processes by recoding specific mRNAs, thereby altering protein functions, but may also act in an editing-independent manner. The specific role of ADAR1 in cardiomyocytes and its mode of action in the heart is not fully understood. To determine the role of ADAR1 in the heart, we used different mutant mouse strains, which allows to distinguish immunogenic, editing-dependent, and editing-independent functions of ADAR1. METHODS: Different Adar1-mutant mouse strains were employed for gene deletion or specific inactivation of ADAR1 enzymatic activity in cardiomyocytes, either alone or in combination with Ifih1 (interferon induced with helicase C domain 1) or Irf7 (interferon regulatory factor 7) gene inactivation. Mutant mice were investigated by immunofluorescence, Western blot, RNAseq, proteomics, and functional MRI analysis. RESULTS: Inactivation of Adar1 in cardiomyocytes resulted in late-onset autoinflammatory myocarditis progressing into dilated cardiomyopathy and heart failure at 6 months of age. Adar1 depletion activated interferon signaling genes but not NFκB (nuclear factor kappa B) signaling or apoptosis and reduced cardiac hypertrophy during pressure overload via induction of Irf7. Additional inactivation of the cytosolic RNA sensor MDA5 (melanoma differentiation-associated gene 5; encoded by the Ifih1 gene) in Adar1 mutant mice prevented activation of interferon signaling gene and delayed heart failure but did not prevent lethality after 8.5 months. In contrast, compound mutants only expressing catalytically inactive ADAR1 in an Ifih1-mutant background were completely normal. Inactivation of Irf7 attenuated the phenotype of Adar1-deficient cardiomyocytes to a similar extent as Ifih1 depletion, identifying IRF7 as the main mediator of autoinflammatory responses caused by the absence of ADAR1 in cardiomyocytes. CONCLUSIONS: Enzymatically active ADAR1 prevents IRF7-mediated autoinflammatory reactions in the heart triggered by endogenous nonedited RNAs. In addition to RNA editing, ADAR1 also serves editing-independent roles in the heart required for long-term cardiac function and survival.


Assuntos
Adenosina Desaminase , Insuficiência Cardíaca , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Inosina/metabolismo , Fator Regulador 7 de Interferon/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferons/metabolismo , Camundongos , Camundongos Mutantes , NF-kappa B/metabolismo , RNA
15.
Nat Commun ; 13(1): 4184, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35859073

RESUMO

The NAD+-dependent SIRT1-7 family of protein deacetylases plays a vital role in various molecular pathways related to stress response, DNA repair, aging and metabolism. Increased activity of individual sirtuins often exerts beneficial effects in pathophysiological conditions whereas reduced activity is usually associated with disease conditions. Here, we demonstrate that SIRT6 deacetylates H3K56ac in myofibers to suppress expression of utrophin, a dystrophin-related protein stabilizing the sarcolemma in absence of dystrophin. Inactivation of Sirt6 in dystrophin-deficient mdx mice reduced damage of myofibers, ameliorated dystrophic muscle pathology, and improved muscle function, leading to attenuated activation of muscle stem cells (MuSCs). ChIP-seq and locus-specific recruitment of SIRT6 using a CRISPR-dCas9/gRNA approach revealed that SIRT6 is critical for removal of H3K56ac at the Downstream utrophin Enhancer (DUE), which is indispensable for utrophin expression. We conclude that epigenetic manipulation of utrophin expression is a promising approach for the treatment of Duchenne Muscular Dystrophy (DMD).


Assuntos
Distrofia Muscular de Duchenne , Sirtuínas , Animais , Distrofina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne/metabolismo , Sirtuínas/genética , Utrofina/genética , Utrofina/metabolismo
16.
Toxins (Basel) ; 13(10)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34679029

RESUMO

This study explored and investigated how zearalenone (ZEA) affects the morphology of small intestine and the distribution and expression of ghrelin and proliferating cell nuclear antigen (PCNA) in the small intestine of weaned gilts. A total of 20 weaned gilts (42-day-old, D × L × Y, weighing 12.84 ± 0.26 kg) were divided into the control and ZEA groups (ZEA at 1.04 mg/kg in diet) in a 35-d study. Histological observations of the small intestines revealed that villus injuries of the duodenum, jejunum and ileum, such as atrophy, retardation and branching dysfunction, were observed in the ZEA treatment. The villi branch of the ileum in the ZEA group was obviously decreased compared to that of the ileum, jejunum and duodenum, and the number of lymphoid nodules of the ileum was increased. Additionally, the effect of ZEA (1.04 mg/kg) was decreased by the immunoreactivity and distribution of ghrelin and PCNA in the duodenal and jejunal mucosal epithelial cells. Interestingly, ZEA increased the immunoreactivity of ghrelin in the ileal mucosal epithelial cells and decreased the immunoreactivity expression of PCNA in the gland epithelium of the small intestine. In conclusion, ZEA (1.04 mg/kg) had adverse effects on the development and the absorptive capacity of the villi of the intestines; yet, the small intestine could resist or ameliorate the adverse effects of ZEA by changing the autocrine of ghrelin in intestinal epithelial cells.


Assuntos
Grelina/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Zearalenona/toxicidade , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/genética , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Intestino Delgado/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/genética , Sus scrofa , Zearalenona/sangue
17.
Toxins (Basel) ; 13(9)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34564630

RESUMO

This study aims to investigate the effects of zearalenone (ZEA) on the localizations and expressions of follicle stimulating hormone receptor (FSHR), luteinizing hormone receptor (LHR), gonadotropin releasing hormone (GnRH) and gonadotropin releasing hormone receptor (GnRHR) in the ovaries of weaned gilts. Twenty 42-day-old weaned gilts were randomly allocated into two groups, and treated with a control diet and a ZEA-contaminated diet (ZEA 1.04 mg/kg), respectively. After 7-day adjustment, gilts were fed individually for 35 days and euthanized for blood and ovarian samples collection before morning feeding on the 36th day. Serum hormones of E2, PRG, FSH, LH and GnRH were determined using radioimmunoassay kits. The ovaries were collected for relative mRNA and protein expression, and immunohistochemical analysis of FSHR, LHR, GnRH and GnRHR. The results revealed that ZEA exposure significantly increased the final vulva area (p < 0.05), significantly elevated the serum concentrations of estradiol, follicle stimulating hormone and GnRH (p < 0.05), and markedly up-regulated the mRNA and protein expressions of FSHR, LHR, GnRH and GnRHR (p < 0.05). Besides, the results of immunohistochemistry showed that the immunoreactive substances of ovarian FSHR, LHR, GnRH and GnRHR in the gilts fed the ZEA-contaminated diet were stronger than the gilts fed the control diet. Our findings indicated that dietary ZEA (1.04 mg/kg) could cause follicular proliferation by interfering with the localization and expression of FSHR, LHR, GnRH and GnRHR, and then affect the follicular development of weaned gilts.


Assuntos
Estrogênios não Esteroides/efeitos adversos , Micotoxinas/efeitos adversos , Ovário/metabolismo , Sus scrofa/genética , Zearalenona/efeitos adversos , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Receptores LHRH/genética , Receptores LHRH/metabolismo , Sus scrofa/metabolismo
18.
Circulation ; 144(13): 1042-1058, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34247492

RESUMO

BACKGROUND: The pathogenesis of life-threatening cardiopulmonary diseases such as pulmonary hypertension (PH) and chronic obstructive pulmonary disease (COPD) originates from a complex interplay of environmental factors and genetic predispositions that is not fully understood. Likewise, little is known about developmental abnormalities or epigenetic dysregulations that might predispose for PH or COPD in adult individuals. METHODS: To identify pathology-associated epigenetic alteration in diseased lung tissues, we screened a cohort of human patients with PH and COPD for changes of histone modifications by immunofluorescence staining. To analyze the function of H4K20me2/3 in lung pathogenesis, we developed a series of Suv4-20h1 knockout mouse lines targeting cardiopulmonary progenitor cells and different heart and lung cell types, followed by hemodynamic studies and morphometric assessment of tissue samples. Molecular, cellular, and biochemical techniques were applied to analyze the function of Suv4-20h1-dependent epigenetic processes in cardiopulmonary progenitor cells and their derivatives. RESULTS: We discovered a strong reduction of the histone modifications of H4K20me2/3 in human patients with COPD but not patients with PH that depend on the activity of the H4K20 di-methyltransferase SUV4-20H1. Loss of Suv4-20h1 in cardiopulmonary progenitor cells caused a COPD-like/PH phenotype in mice including the formation of perivascular tertiary lymphoid tissue and goblet cell hyperplasia, hyperproliferation of smooth muscle cells/myofibroblasts, impaired alveolarization and maturation defects of the microvasculature leading to massive right ventricular dilatation and premature death. Mechanistically, SUV4-20H1 binds directly to the 5'-upstream regulatory element of the superoxide dismutase 3 (Sod3) gene to repress its expression. Increased levels of the extracellular SOD3 enzyme in Suv4-20h1 mutants increases hydrogen peroxide concentrations, causing vascular defects and impairing alveolarization. CONCLUSIONS: Our findings reveal a pivotal role of the histone modifier SUV4-20H1 in cardiopulmonary codevelopment and uncover the developmental origins of cardiopulmonary diseases. We assume that the study will facilitate the understanding of pathogenic events causing PH and COPD and aid the development of epigenetic drugs for the treatment of cardiopulmonary diseases.


Assuntos
Epigênese Genética/genética , Histona-Lisina N-Metiltransferase/metabolismo , Hipertensão Pulmonar/genética , Doença Pulmonar Obstrutiva Crônica/genética , Células-Tronco/metabolismo , Animais , Humanos , Camundongos , Camundongos Knockout
19.
Front Vet Sci ; 8: 629006, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614768

RESUMO

Zearalenone (ZEA) has an estrogen-like effect, which can injure the reproductive system of animals, causing infertility, and abortion in sows. However, the underlying mechanisms are still not clear. The objective of this study was to assess the effects of ZEA on the localization and expression of growth hormone (GH), growth hormone receptor (GHR), and heat shock protein 70 (Hsp70) in the ovaries of post-weaning gilts. Forty healthy post-weaning gilts were randomly provided one of four diets: normal basal diet supplemented with 0 (control), 0.5 (ZEA0.5), 1.0 (ZEA1.0), and 1.5 (ZEA1.5) mg ZEA/kg. Gilts were housed and fed individually for 35 days; the ovaries were collected after euthanasia for antioxidant index, relative mRNA and protein expression, and immunohistochemical analyses of GH, GHR, and Hsp70. The results revealed that the glutathione peroxidase and total superoxide dismutase levels decreased (p < 0.05), whereas the malondialdehyde level increased (p < 0.05) with increasing ZEA content. The localization pattern of GH, GHR, and Hsp70 in ZEA-treated gilts was the same as that in the control; however, the localization of yellow and brown immunoreactive substances of GH, GHR, and Hsp70 was stronger in the ZEA groups than in the control. The relative mRNA and protein expression of GHR and Hsp70 was the highest in the ZEA1.0 group (p < 0.05), whereas that of GH was the highest in the ZEA0.5 group (p < 0.05). The mRNA and protein expression of GH was lower in the ZEA1.5 group than in the control (p < 0.05). Hsp70 results showed adverse responses to increasing ZEA levels in gilt ovaries, suggesting that Hsp70 played an important role in alleviating ZEA-induced oxidative stress.

20.
Reprod Fertil Dev ; 33(3): 209-219, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33504425

RESUMO

Previous studies demonstrated that progesterone (P4) can promote prostaglandin (PG) E2 production; however, how P4 mediates the synthesis of PGE2 remains unclear. In this study, cervical epithelial cells from mice during the follicular phase were cultured invitro and treated with different concentrations of P4 (5, 10, and 20nM). The results of the present study suggest that treatment of murine cervical epithelial cells with 10nM P4 for 24h contributed to: (1) significantly increased expression of protein kinase A (PKA), cytosolic phospholipase A2 (cPLA2) and PGE synthase (PGES)-1; (2) higher phosphorylated (p-) to total extracellular signal-regulated kinase (ERK) 1/2 and hormone-sensitive lipase (HSL) ratios; (3) a significant decrease in the number of lipid droplets (LDs) and fatty acid content within LDs in epithelial cells; and (4) enhanced arachidonic acid and PGE2 levels in cells compared with the control (0nM P4) group (P<0.01 for all findings). In contrast, the PKA inhibitor H89 contributed to significantly decreased cPLA2, PGES-1 and HSL expression, ERK1/2 phosphorylation and arachidonic acid and PGE2 levels, even in the presence of P4. These data show that P4 can act via the PKA/ERK1/2 pathway to stimulate lipolysis of triacylglycerol in the LD core and degradation of phospholipid in the LD membrane to promote PGE2 synthesis in murine cervical epithelial cells.


Assuntos
Colo do Útero/efeitos dos fármacos , Dinoprostona/biossíntese , Células Epiteliais/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Lipólise/efeitos dos fármacos , Progesterona/farmacologia , Animais , Células Cultivadas , Colo do Útero/citologia , Colo do Útero/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Epiteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Gotículas Lipídicas/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...