Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(33): eado4571, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39141743

RESUMO

Morphological novelties, or key innovations, are instrumental to the diversification of the organisms. In plants, one such innovation is the evolution of zygomorphic flowers, which is thought to promote outcrossing and increase flower morphological diversity. We isolated three allelic mutants from two Mimulus species displaying altered floral symmetry and identified the causal gene as the ortholog of Arabidopsis BLADE-ON-PETIOLE. We found that MlBOP and MlCYC2A physically interact and this BOP-CYC interaction module is highly conserved across the angiosperms. Furthermore, MlBOP self-ubiquitinates and suppresses MlCYC2A self-activation. MlCYC2A, in turn, impedes MlBOP ubiquitination. Thus, this molecular tug-of-war between MlBOP and MlCYC2A fine-tunes the expression of MlCYC2A, contributing to the formation of bilateral symmetry in flowers, a key trait in angiosperm evolution.


Assuntos
Flores , Regulação da Expressão Gênica de Plantas , Mimulus , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Mimulus/genética , Mimulus/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutação , Ubiquitinação , Ligação Proteica , Fenótipo , Alelos , Proteínas de Ligação a DNA , Fatores de Transcrição
2.
Cell Rep ; 43(7): 114444, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990723

RESUMO

The emergence of novel traits is often preceded by a potentiation phase, when all the genetic components necessary for producing the trait are assembled. However, elucidating these potentiating factors is challenging. We have previously shown that an anthocyanin-activating R2R3-MYB, STRIPY, triggers the emergence of a distinct foliar pigmentation pattern in the monkeyflower Mimulus verbenaceus. Here, using forward and reverse genetics approaches, we identify three potentiating factors that pattern STRIPY expression: MvHY5, a master regulator of light signaling that activates STRIPY and is expressed throughout the leaf, and two leaf developmental regulators, MvALOG1 and MvTCP5, that are expressed in opposing gradients along the leaf proximodistal axis and negatively regulate STRIPY. These results provide strong empirical evidence that phenotypic novelties can be potentiated through incorporation into preexisting genetic regulatory networks and highlight the importance of positional information in patterning the novel foliar stripe.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Pigmentação , Folhas de Planta , Antocianinas/metabolismo , Folhas de Planta/metabolismo , Mimulus/metabolismo , Mimulus/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fenótipo
3.
Trends Genet ; 40(8): 668-680, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38704304

RESUMO

It has been well documented that mutations in coding DNA or cis-regulatory elements underlie natural phenotypic variation in many organisms. However, the development of sophisticated functional tools in recent years in a wide range of traditionally non-model systems have revealed many 'unusual suspects' in the molecular bases of phenotypic evolution, including upstream open reading frames (uORFs), cryptic splice sites, and small RNAs. Furthermore, large-scale genome sequencing, especially long-read sequencing, has identified a cornucopia of structural variation underlying phenotypic divergence and elucidated the composition of supergenes that control complex multi-trait polymorphisms. In this review article we highlight recent studies that demonstrate this great diversity of molecular mechanisms producing adaptive genetic variation and the panoply of evolutionary paths leading to the 'grandeur of life'.


Assuntos
Evolução Molecular , Fases de Leitura Aberta , Fenótipo , Fases de Leitura Aberta/genética , Humanos , Animais , Variação Genética/genética , Mutação
4.
BMC Plant Biol ; 24(1): 62, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262916

RESUMO

Nectar guide trichomes play crucial ecological roles in bee-pollinated flowers, as they serve as footholds and guides for foraging bees to access the floral rewards. However, the genetic basis of natural variation in nectar guide trichomes among species remains poorly understood. In this study, we performed genetic analysis of nectar guide trichome variation between two closely related monkeyflower (Mimulus) species, the bumblebee-pollinated Mimulus lewisii and self-pollinated M. parishii. We demonstrate that a MIXTA-like R2R3-MYB gene, GUIDELESS, is a major contributor to the nectar guide trichome length variation between the two species. The short-haired M. parishii carries a recessive allele due to non-synonymous substitutions in a highly conserved motif among MIXTA-like MYB proteins. Furthermore, our results suggest that besides GUIDELESS, additional loci encoding repressors of trichome elongation also contribute to the transition from bumblebee-pollination to selfing. Taken together, these results suggest that during a pollination syndrome switch, changes in seemingly complex traits such as nectar guide trichomes could have a relatively simple genetic basis, involving just a few genes of large effects.


Assuntos
Mimulus , Néctar de Plantas , Abelhas , Animais , Tricomas , Polinização , Flores
5.
Genetics ; 225(3)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603838

RESUMO

The evolution of genomic incompatibilities causing postzygotic barriers to hybridization is a key step in species divergence. Incompatibilities take 2 general forms-structural divergence between chromosomes leading to severe hybrid sterility in F1 hybrids and epistatic interactions between genes causing reduced fitness of hybrid gametes or zygotes (Dobzhansky-Muller incompatibilities). Despite substantial recent progress in understanding the molecular mechanisms and evolutionary origins of both types of incompatibility, how each behaves across multiple generations of hybridization remains relatively unexplored. Here, we use genetic mapping in F2 and recombinant inbred line (RIL) hybrid populations between the phenotypically divergent but naturally hybridizing monkeyflowers Mimulus cardinalis and M. parishii to characterize the genetic basis of hybrid incompatibility and examine its changing effects over multiple generations of experimental hybridization. In F2s, we found severe hybrid pollen inviability (<50% reduction vs parental genotypes) and pseudolinkage caused by a reciprocal translocation between Chromosomes 6 and 7 in the parental species. RILs retained excess heterozygosity around the translocation breakpoints, which caused substantial pollen inviability when interstitial crossovers had not created compatible heterokaryotypic configurations. Strong transmission ratio distortion and interchromosomal linkage disequilibrium in both F2s and RILs identified a novel 2-locus genic incompatibility causing sex-independent gametophytic (haploid) lethality. The latter interaction eliminated 3 of the expected 9 F2 genotypic classes via F1 gamete loss without detectable effects on the pollen number or viability of F2 double heterozygotes. Along with the mapping of numerous milder incompatibilities, these key findings illuminate the complex genetics of plant hybrid breakdown and are an important step toward understanding the genomic consequences of natural hybridization in this model system.


Assuntos
Mimulus , Mimulus/genética , Mapeamento Cromossômico , Hibridização Genética , Locos de Características Quantitativas , Genômica
6.
Curr Biol ; 33(8): R301-R303, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37098331

RESUMO

Beetle daisies evolved floral spots that mimic female bee flies to entice mate-seeking males for pollination. A new study shows that these deceptive spots emerged through stepwise co-option of multiple genetic elements, shedding light on the origin of complex phenotypic novelties.


Assuntos
Besouros , Dípteros , Orchidaceae , Masculino , Feminino , Abelhas/genética , Animais , Polinização , Flores/genética , Reprodução , Besouros/genética
7.
Science ; 379(6632): 576-582, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36758083

RESUMO

Taxon-specific small RNA loci are widespread in eukaryotic genomes, yet their role in lineage-specific adaptation, phenotypic diversification, and speciation is poorly understood. Here, we report that a speciation locus in monkeyflowers (Mimulus), YELLOW UPPER (YUP), contains an inverted repeat region that produces small interfering RNAs (siRNAs) in a phased pattern. Although the inverted repeat is derived from a partial duplication of a protein-coding gene that is not involved in flower pigmentation, one of the siRNAs targets and represses a master regulator of floral carotenoid pigmentation. YUP emerged with two protein-coding genes that control other aspects of flower coloration as a "superlocus" in a subclade of Mimulus and has contributed to subsequent phenotypic diversification and pollinator-mediated speciation in the descendant species.


Assuntos
Carotenoides , Flores , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mimulus , Pigmentação , RNA Interferente Pequeno , Carotenoides/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Mimulus/genética , Mimulus/crescimento & desenvolvimento , Pigmentação/genética , RNA Interferente Pequeno/genética , Loci Gênicos
8.
New Phytol ; 237(1): 310-322, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36101514

RESUMO

The origin of phenotypic novelty is one of the most challenging problems in evolutionary biology. Although genetic regulatory network rewiring or co-option has been widely recognised as a major contributor, in most cases how such genetic rewiring/co-option happens is completely unknown. We have studied a novel foliar pigmentation pattern that evolved recently in the monkeyflower species Mimulus verbenaceus. Through genome-wide association tests using wild-collected samples, experimental crosses of laboratory inbred lines, gene expression analyses, and functional assays, we identified an anthocyanin-activating R2R3-MYB gene, STRIPY, as the causal gene triggering the emergence of the discrete, mediolateral anthocyanin stripe in the M. verbenaceus leaf. Chemical mutagenesis revealed the existence of upstream activators and repressors that form a 'hidden' prepattern along the leaf proximodistal axis, potentiating the unique expression pattern of STRIPY. Population genomics analyses did not reveal signatures of positive selection, indicating that nonadaptive processes may be responsible for the establishment of this novel trait in the wild. This study demonstrates that the origin of phenotypic novelty requires at least two separate phases, potentiation and actualisation. The foliar stripe pattern of M. verbenaceus provides an excellent platform to probe the molecular details of both processes in future studies.


Assuntos
Mimulus , Mimulus/genética , Antocianinas/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentação/genética
9.
Hortic Res ; 9: uhac168, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204206

RESUMO

Floral traits often show correlated variation within and among species. For species with fused petals, strong correlations among corolla tube, stamen, and pistil length are particularly prevalent, and these three traits are considered an intra-floral functional module. Pleiotropy has long been implicated in such modular integration of floral traits, but empirical evidence based on actual gene function is scarce. We tested the role of pleiotropy in the expression of intra-floral modularity in the monkeyflower species Mimulus verbenaceus by transgenic manipulation of a homolog of Arabidopsis PRE1. Downregulation of MvPRE1 by RNA interference resulted in simultaneous decreases in the lengths of corolla tube, petal lobe, stamen, and pistil, but little change in calyx and leaf lengths or organ width. Overexpression of MvPRE1 caused increased corolla tube and stamen lengths, with little effect on other floral traits. Our results suggest that genes like MvPRE1 can indeed regulate multiple floral traits in a functional module but meanwhile have little effect on other modules, and that pleiotropic effects of these genes may have played an important role in the evolution of floral integration and intra-floral modularity.

10.
Sci Adv ; 8(37): eabo1113, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103532

RESUMO

Phenotypic evolution is usually attributed to changes in protein function or gene transcription. In principle, mutations that affect protein abundance through enhancing or attenuating protein translation also could be an important source for phenotypic evolution. However, these types of mutations remain largely unexplored in the studies of phenotypic variation in nature. Through fine-scale genetic mapping and functional interrogation, we identify a single nucleotide substitution in an anthocyanin-activating R2R3-MYB gene causing flower color variation between a pair of closely related monkeyflower (Mimulus) species, the hummingbird-pollinated Mimulus cardinalis, and self-pollinated Mimulus parishii. This causal mutation is located in the 5' untranslated region and generates an upstream ATG start codon, leading to attenuated protein translation and reduced flower coloration in the self-pollinated species. Together, our results provide empirical support for the role of mutations affecting protein translation, as opposed to protein function or transcript level, in natural phenotypic variation.

11.
Cell Host Microbe ; 30(8): 1124-1138.e8, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35908550

RESUMO

Constitutive activation of plant immunity is detrimental to plant growth and development. Here, we uncover the role of a long non-coding RNA (lncRNA) in fine-tuning the balance of plant immunity and growth. We find that a lncRNA termed salicylic acid biogenesis controller 1 (SABC1) suppresses immunity and promotes growth in healthy plants. SABC1 recruits the polycomb repressive complex 2 to its neighboring gene NAC3, which encodes a NAC transcription factor, to decrease NAC3 transcription via H3K27me3. NAC3 activates the transcription of isochorismate synthase 1 (ICS1), a key enzyme catalyzing salicylic acid (SA) biosynthesis. SABC1 thus represses SA production and plant immunity via decreasing NAC3 and ICS1 transcriptions. Upon pathogen infection, SABC1 is downregulated to derepress plant resistance to bacteria and viruses. Together, our findings reveal lncRNA SABC1 as a molecular switch in balancing plant defense and growth by modulating SA biosynthesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Imunidade Vegetal/fisiologia , Plantas/genética , RNA Longo não Codificante/genética , Ácido Salicílico
12.
New Phytol ; 232(5): 2191-2206, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449905

RESUMO

Style length is a major determinant of breeding strategies in flowering plants and can vary dramatically between and within species. However, little is known about the genetic and developmental control of style elongation. We characterized the role of two classes of leaf adaxial-abaxial polarity factors, SUPPRESSOR OF GENE SILENCING3 (SGS3) and the YABBY family transcription factors, in the regulation of style elongation in Mimulus lewisii. We also examined the spatiotemporal patterns of auxin response during style development. Loss of SGS3 function led to reduced style length via limiting cell division, and downregulation of YABBY genes by RNA interference resulted in shorter styles by decreasing both cell division and cell elongation. We discovered an auxin response minimum between the stigma and ovary during the early stages of pistil development that marks style differentiation. Subsequent redistribution of auxin response to this region was correlated with style elongation. Auxin response was substantially altered when both SGS3 and YABBY functions were disrupted. We suggest that auxin signaling plays a central role in style elongation and that the way in which auxin signaling controls the different cell division and elongation patterns underpinning natural style length variation is a major question for future research.


Assuntos
Magnoliopsida , Mimulus , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Folhas de Planta , Fatores de Transcrição/genética
13.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910901

RESUMO

Eukaryotic cells contain numerous membraneless organelles that are made from liquid droplets of proteins and nucleic acids and that provide spatiotemporal control of various cellular processes. However, the molecular mechanisms underlying the formation and rapid stress-induced alterations of these organelles are relatively uncharacterized. Here, we investigated the roles of DEAD-box helicases in the formation and alteration of membraneless nuclear dicing bodies (D-bodies) in Arabidopsis thaliana We uncovered that RNA helicase 6 (RH6), RH8, and RH12 are previously unidentified D-body components. These helicases interact with and promote the phase separation of SERRATE, a key component of D-bodies, and drive the formation of D-bodies through liquid-liquid phase separations (LLPSs). The accumulation of these helicases in the nuclei decreases upon Turnip mosaic virus infections, which couples with the decrease of D-bodies. Our results thus reveal the key roles of RH6, RH8, and RH12 in modulating D-body formation via LLPSs.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA Helicases/metabolismo
14.
New Phytol ; 231(3): 933-949, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864686

RESUMO

Anthocyanins play a variety of adaptive roles in both vegetative tissues and reproductive organs of plants. The broad functionality of these compounds requires sophisticated regulation of the anthocyanin biosynthesis pathway to allow proper localization, timing, and optimal intensity of pigment deposition. While it is well-established that the committed steps of anthocyanin biosynthesis are activated by a highly conserved MYB-bHLH-WDR (MBW) protein complex in virtually all flowering plants, anthocyanin repression seems to be achieved by a wide variety of protein and small RNA families that function in different tissue types and in response to different developmental, environmental, and hormonal cues. In this review, we survey recent progress in the identification of anthocyanin repressors and the characterization of their molecular mechanisms. We find that these seemingly very different repression modules act through a remarkably similar logic, the so-called 'double-negative logic'. Much of the double-negative regulation of anthocyanin production involves signal-induced degradation or sequestration of the repressors from the MBW protein complex. We discuss the functional and evolutionary advantages of this logic design compared with simple or sequential positive regulation. These advantages provide a plausible explanation as to why plants have evolved so many anthocyanin repressors.


Assuntos
Antocianinas , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Genetics ; 217(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33724417

RESUMO

Much of the visual diversity of angiosperms is due to the frequent evolution of novel pigmentation patterns in flowers. The gene network responsible for anthocyanin pigmentation, in particular, has become a model for investigating how genetic changes give rise to phenotypic innovation. In the monkeyflower genus Mimulus, an evolutionarily recent gain of petal lobe anthocyanin pigmentation in M. luteus var. variegatus was previously mapped to genomic region pla2. Here, we use sequence and expression analysis, followed by transgenic manipulation of gene expression, to identify MYB5a-orthologous to the NEGAN transcriptional activator from M. lewisii-as the gene responsible for the transition to anthocyanin-pigmented petals in M. l. variegatus. In other monkeyflower taxa, MYB5a/NEGAN is part of a reaction-diffusion network that produces semi-repeating spotting patterns, such as the array of spots in the nectar guides of both M. lewisii and M. guttatus. Its co-option for the evolution of an apparently non-patterned trait-the solid petal lobe pigmentation of M. l. variegatus-illustrates how reaction-diffusion can contribute to evolutionary novelty in non-obvious ways. Transcriptome sequencing of a MYB5a RNAi line of M. l. variegatus reveals that this genetically simple change, which we hypothesize to be a regulatory mutation in cis to MYB5a, has cascading effects on gene expression, not only on the enzyme-encoding genes traditionally thought of as the targets of MYB5a but also on all of its known partners in the anthocyanin regulatory network.


Assuntos
Antocianinas/genética , Redes Reguladoras de Genes , Mimulus/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Antocianinas/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Mimulus/metabolismo , Pigmentação , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
16.
PLoS Genet ; 17(2): e1009095, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33617525

RESUMO

Inferences about past processes of adaptation and speciation require a gene-scale and genome-wide understanding of the evolutionary history of diverging taxa. In this study, we use genome-wide capture of nuclear gene sequences, plus skimming of organellar sequences, to investigate the phylogenomics of monkeyflowers in Mimulus section Erythranthe (27 accessions from seven species). Taxa within Erythranthe, particularly the parapatric and putatively sister species M. lewisii (bee-pollinated) and M. cardinalis (hummingbird-pollinated), have been a model system for investigating the ecological genetics of speciation and adaptation for over five decades. Across >8000 nuclear loci, multiple methods resolve a predominant species tree in which M. cardinalis groups with other hummingbird-pollinated taxa (37% of gene trees), rather than being sister to M. lewisii (32% of gene trees). We independently corroborate a single evolution of hummingbird pollination syndrome in Erythranthe by demonstrating functional redundancy in genetic complementation tests of floral traits in hybrids; together, these analyses overturn a textbook case of pollination-syndrome convergence. Strong asymmetries in allele sharing (Patterson's D-statistic and related tests) indicate that gene tree discordance reflects ancient and recent introgression rather than incomplete lineage sorting. Consistent with abundant introgression blurring the history of divergence, low-recombination and adaptation-associated regions support the new species tree, while high-recombination regions generate phylogenetic evidence for sister status for M. lewisii and M. cardinalis. Population-level sampling of core taxa also revealed two instances of chloroplast capture, with Sierran M. lewisii and Southern Californian M. parishii each carrying organelle genomes nested within respective sympatric M. cardinalis clades. A recent organellar transfer from M. cardinalis, an outcrosser where selfish cytonuclear dynamics are more likely, may account for the unexpected cytoplasmic male sterility effects of selfer M. parishii organelles in hybrids with M. lewisii. Overall, our phylogenomic results reveal extensive reticulation throughout the evolutionary history of a classic monkeyflower radiation, suggesting that natural selection (re-)assembles and maintains species-diagnostic traits and barriers in the face of gene flow. Our findings further underline the challenges, even in reproductively isolated species, in distinguishing re-use of adaptive alleles from true convergence and emphasize the value of a phylogenomic framework for reconstructing the evolutionary genetics of adaptation and speciation.


Assuntos
Flores/anatomia & histologia , Flores/genética , Introgressão Genética , Mimulus/genética , Polinização/genética , Adaptação Fisiológica , Alelos , Animais , Abelhas , Aves , Mapeamento Cromossômico , Evolução Molecular , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Filogenia , Infertilidade das Plantas/fisiologia , Recombinação Genética/genética , Isolamento Reprodutivo
17.
Evol Dev ; 23(3): 244-255, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33410592

RESUMO

Fusion of petals to form a corolla tube is considered a key innovation contributing to the diversification of many flowering plant lineages. Corolla tube length often varies dramatically among species and is a major determinant of pollinator preference. However, our understanding of the developmental dynamics underlying corolla tube length variation is very limited. Here we examined corolla tube growth in the Mimulus lewisii species complex, an emerging model system for studying the developmental genetics and evo-devo of pollinator-associated floral traits. We compared developmental and cellular processes associated with corolla tube length variation among the bee-pollinated M. lewisii, the hummingbird-pollinated Mimulus verbenaceus, and the self-pollinated Mimulus parishii. We found that in all three species, cell size is non-uniformly distributed along the mature tube, with the longest cells just distal to the stamen insertion site. Differences in corolla tube length among the three species are not associated with processes of organogenesis or early development but are associated with variation in multiple processes occurring later in development, including the location and duration of cell division and cell elongation. The tube growth curves of the small-flowered M. parishii and large-flowered M. lewisii are essentially indistinguishable, except that M. parishii tubes stop growing earlier at a smaller size, suggesting a critical role of heterochrony in the shift from outcrossing to selfing. These results not only highlight the developmental process associated with corolla tube variation among species but also provide a baseline reference for future developmental genetic analyses of mutants or transgenic plants with altered corolla tube morphology in this emerging model system.


Assuntos
Mimulus , Animais , Abelhas , Flores , Mimulus/genética , Fenótipo , Polinização , Síndrome
18.
Plant Cell ; 32(11): 3452-3468, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917737

RESUMO

Over 80,000 angiosperm species produce flowers with petals fused into a corolla tube. The corolla tube contributes to the tremendous diversity of flower morphology and plays a critical role in plant reproduction, yet it remains one of the least understood plant structures from a developmental genetics perspective. Through mutant analyses and transgenic experiments, we show that the tasiRNA-ARF pathway is required for corolla tube formation in the monkeyflower species Mimulus lewisii Loss-of-function mutations in the M. lewisii orthologs of ARGONAUTE7 and SUPPRESSOR OF GENE SILENCING3 cause a dramatic decrease in abundance of TAS3-derived small RNAs and a moderate upregulation of AUXIN RESPONSE FACTOR3 (ARF3) and ARF4, which lead to inhibition of lateral expansion of the bases of petal primordia and complete arrest of the upward growth of the interprimordial regions, resulting in unfused corollas. Using the DR5 auxin-responsive promoter, we discovered that auxin signaling is continuous along the petal primordium base and the interprimordial region during the critical stage of corolla tube formation in the wild type, similar to the spatial pattern of MlARF4 expression. Auxin response is much weaker and more restricted in the mutant. Furthermore, exogenous application of a polar auxin transport inhibitor to wild-type floral apices disrupted petal fusion. Together, these results suggest a new conceptual model highlighting the central role of auxin-directed synchronized growth of the petal primordium base and the interprimordial region in corolla tube formation.


Assuntos
Flores/crescimento & desenvolvimento , Flores/genética , Mimulus/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Flores/anatomia & histologia , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Redes e Vias Metabólicas/genética , Mimulus/efeitos dos fármacos , Mimulus/crescimento & desenvolvimento , Mutação , Fenótipo , Ftalimidas/farmacologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , RNA Interferente Pequeno
19.
Curr Biol ; 30(5): 802-814.e8, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32155414

RESUMO

Many organisms exhibit visually striking spotted or striped pigmentation patterns. Developmental models predict that such spatial patterns can form when a local autocatalytic feedback loop and a long-range inhibitory feedback loop interact. At its simplest, this self-organizing network only requires one self-activating activator that also activates a repressor, which inhibits the activator and diffuses to neighboring cells. However, the molecular activators and inhibitors fully fitting this versatile model remain elusive in pigmentation systems. Here, we characterize an R2R3-MYB activator and an R3-MYB repressor in monkeyflowers (Mimulus). Through experimental perturbation and mathematical modeling, we demonstrate that the properties of these two proteins correspond to an activator-inhibitor pair in a two-component, reaction-diffusion system, explaining the formation of dispersed anthocyanin spots in monkeyflower petals. Notably, disrupting this pattern impacts pollinator visitation. Thus, subtle changes in simple activator-inhibitor systems are likely essential contributors to the evolution of the remarkable diversity of pigmentation patterns in flowers.


Assuntos
Mimulus/fisiologia , Pigmentos Biológicos/genética , Proteínas de Plantas/genética , Proteínas Proto-Oncogênicas c-myb/genética , Fatores de Transcrição/genética , Mimulus/genética , Pigmentação/genética , Proteínas de Plantas/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Fatores de Transcrição/metabolismo
20.
Plant Cell ; 32(5): 1536-1555, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32132132

RESUMO

Little is known about the factors regulating carotenoid biosynthesis in flowers. Here, we characterized the REDUCED CAROTENOID PIGMENTATION2 (RCP2) locus from two monkeyflower (Mimulus) species, the bumblebee-pollinated species Mimulus lewisii and the hummingbird-pollinated species Mimulus verbenaceus We show that loss-of-function mutations of RCP2 cause drastic down-regulation of the entire carotenoid biosynthetic pathway. The causal gene underlying RCP2 encodes a tetratricopeptide repeat protein that is closely related to the Arabidopsis (Arabidopsis thaliana) REDUCED CHLOROPLAST COVERAGE proteins. RCP2 appears to regulate carotenoid biosynthesis independently of RCP1, a previously identified R2R3-MYB master regulator of carotenoid biosynthesis. We show that RCP2 is necessary and sufficient for chromoplast development and carotenoid accumulation in floral tissues. Simultaneous down-regulation of RCP2 and two closely related paralogs, RCP2-L1 and RCP2-L2, yielded plants with pale leaves deficient in chlorophyll and carotenoids and with reduced chloroplast compartment size. Finally, we demonstrate that M. verbenaceus is just as amenable to chemical mutagenesis and in planta transformation as the more extensively studied M. lewisii, making these two species an excellent platform for comparative developmental genetics studies of closely related species with dramatic phenotypic divergence.


Assuntos
Carotenoides/metabolismo , Mimulus/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plastídeos/metabolismo , Repetições de Tetratricopeptídeos , Amitrol (Herbicida)/farmacologia , Clorofila/metabolismo , Cloroplastos/metabolismo , Regulação para Baixo/genética , Epistasia Genética , Flores/genética , Regulação da Expressão Gênica de Plantas , Funções Verossimilhança , Mutação/genética , Fenótipo , Filogenia , Pigmentação/genética , Folhas de Planta/metabolismo , Plastídeos/ultraestrutura , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...