Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(29): 15848-15858, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37436791

RESUMO

Membrane-based technologies can provide cost-effective and energy-efficient methods for various separation processes. The key goal is to develop materials with uniform, tunable, and well-defined subnanometer-scale channels. Suitable membrane materials should have high selectivity and permeance and can be manufactured in a robust and scalable fashion. Here, we report the construction of sub-1 nm intercrystalline channels with such characteristics and elucidate their transport properties. These channels are formed by assembling 3D aluminum formate crystals during the amorphous-to-crystalline transformation process. By controlling the transformation time, the channel size can be tuned from the macroscopic scale to nanometer scale. The resulting membranes exhibit tailored selectivity and permeance, with molecular weight cutoffs ranging from around 300 Da to approximately 650 Da, and ethanol permeance ranging from 0.8 to 22.0 L m-2 h-1 bar-1. We further show that liquid flow through these channels changes from viscosity-dominated continuum flow to subcontinuum flow, which can be described by a modified Hagen-Poiseuille model. Our strategy provides a new scalable platform for applications that commonly exploit nanoscale mass transport.

2.
Chem Commun (Camb) ; 58(48): 6865-6868, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35621067

RESUMO

We report the antifouling properties of thin-film nanocomposite (TFN) membranes containing two water-stable metal-organic cages (MOCs). The MOC-containing TFN membranes possess excellent antifouling properties against positively-charged foulants and protein (BSA, up to 99.7% water permeability retention) and achieve up to 100% water permeability recovery.


Assuntos
Incrustação Biológica , Nanocompostos , Purificação da Água , Incrustação Biológica/prevenção & controle , Membranas Artificiais , Nylons , Água
3.
Acc Chem Res ; 55(11): 1546-1560, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35579616

RESUMO

ConspectusFor the last two decades, materials scientists have contributed to a growing library of porous crystalline materials. These synthetic materials are typically extended networks, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), or discrete materials like metal-organic cages (MOCs) and porous organic cages (POCs). Advanced porous materials have shown promise for various applications due to their modular nature and structural tunability. MOCs have recently garnered attention because of their molecularity that bestows them with many unique possibilities (e.g., solution-processability, structural diversity, and postsynthetic processability).MOCs are discrete molecular assemblies of organic ligands coordinated with either metal cations or metal oxide clusters of different nuclearities, resulting in architectures with inherent porosity. Notably, the molecular nature of MOCs endows them with easy solution-processability unattainable with traditional framework materials. To date, a number of stable MOCs have been reported, such as those based on Rh (Rh-O bond energy: 405 ± 42 kJ/mol), Fe (Fe-O bond energy: 407.0 ± 1.0 kJ/mol), Cr (Cr-O bond energy: 461 ± 8.7 kJ/mol), Ti (Ti-O bond energy: 666.5 ± 5.6 kJ/mol), and Zr (Zr-O bond energy: 766.1 ± 10.6 kJ/mol). Paddle-wheel MOCs have also shown great stability in aqueous environments due to their rigid backbones. The zirconium MOC (Zr-MOCs) family emerges as a class of very robust cages for which their high bond energy endows them with high hydrothermal stability.In 2013, we reported the first four zirconocene tetrahedrons assembled from trinuclear zirconium oxide clusters with ditopic or tritopic organic ligands. Since then, significant progress in the rational design of Zr-MOC has led to an assortment of structures dedicated to meaningful applications.In this Account, we highlight the recent progress in synthesizing Zr-MOCs and Zr-MOC-based higher dimensional frameworks and their applications dedicated in our laboratories and beyond. The general Zr-MOC synthetic strategy involves assembling Zr trinuclear clusters with organic ligands (rigid or flexible) containing various functional groups. This chemistry has afforded cages with structural versatility and active sites, e.g., amino groups, for postsynthetic modifications (PSMs). Since the extrinsic porosity of cage-based frameworks is relatively weak, the resulting frameworks are susceptible to structural rearrangement after solvent removal. To circumvent this limitation, increasing the hydrogen bond ratio and strength between interlinked cages and conducting in situ catalytic polymerizations have been reported to afford permanently porous structures amenable to host-guest reactions.To expand their potential applications, multifunctional Zr-MOCs are highly desired. Such multivariate MOCs can be attained by either employing the isoreticular expansion strategy to create MOCs with high surface areas or using mixed-ligand approaches to afford heterogeneous MOCs. In addition, amorphous MOCs, flexible organic ligands, new functionalities, and MOC-based extended networks are exciting new approaches to developing materials with structural versatility and enhanced characteristics. Thereby, we believe the stability and versatility of the Zr-MOC family hold great potential in expanding and addressing challenging applications.

4.
ACS Nano ; 16(2): 2355-2368, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35084185

RESUMO

Porous organic cages (POCs) have many advantages, including superior microenvironments, good monodispersity, and shape homogeneity, excellent molecular solubility, high chemical stability, and intriguing host-guest chemistry. These properties enable POCs to overcome the limitations of extended porous networks such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). However, the applications of POCs in bioimaging remain limited due to the problems associated with their rigid and hydrophobic structures, thus leading to strong aggregation-caused quenching (ACQ) in aqueous biological media. To address this challenge, we report the preparation of aggregation-induced emission (AIE)-active POCs capable of stimuli responsiveness for enhanced bioimaging. We rationally design a hydrophilic, structurally flexible tetraphenylethylene (TPE)-based POC that is almost entirely soluble in aqueous solutions. This POC's conformationally flexible superstructure allows the dynamic rotation of the TPE-based phenyl rings, thus endowing impressive AIE characteristics for responses to environmental changes such as temperature and viscosity. We employ these notable features in the bioimaging of living cells and obtain good performance, demonstrating that the present AIE-active POCs are suitable candidates for further biological applications.


Assuntos
Estruturas Metalorgânicas , Diagnóstico por Imagem , Porosidade
5.
J Am Chem Soc ; 143(42): 17716-17723, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34608802

RESUMO

Membrane technology is attractive for natural gas separation (removing CO2, H2O, and hydrocarbons from CH4) because of membranes' low energy consumption and small environmental footprint. Compared to polymeric membranes, microporous inorganic membranes such as silicoaluminophosphate-34 (SAPO-34) membrane can retain their separation performance under conditions close to industrial requirements. However, moisture and hydrocarbons in natural gas can be strongly adsorbed in the pores of those membranes, thereby reducing the membrane separation performance. Herein, we report the fabrication of a polycrystalline MIL-160 membrane on an Al2O3 substrate by in situ hydrothermal synthesis. The MIL-160 membrane with a thickness of ca. 3 µm shows a remarkable molecular sieving effect in gas separation. Besides, the pore size and environment of the MIL-160 membrane can be precisely controlled using reticular chemistry by regulating the size and functionality of the ligand. Interestingly, the more polar fluorine-functionalized multivariate MIL-160/CAU-10-F membrane exhibits a 10.7% increase in selectivity for CO2/CH4 separation and a 31.2% increase in CO2 permeance compared to those of the MIL-160 membrane. In addition, hydrophobic MIL-160 membranes and MIL-160/CAU-10-F membranes are more resistant to water vapor and hydrocarbons than the hydrophilic SAPO-34 membranes.

6.
Nat Commun ; 11(1): 4927, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004793

RESUMO

Nature has protein channels (e.g., aquaporins) that preferentially transport water molecules while rejecting even the smallest hydrated ions. Aspirations to create robust synthetic counterparts have led to the development of a few one-dimensional channels. However, replicating the performance of the protein channels in these synthetic water channels remains a challenge. In addition, the dimensionality of the synthetic water channels also imposes engineering difficulties to align them in membranes. Here we show that zero-dimensional porous organic cages (POCs) with nanoscale pores can effectively reject small cations and anions while allowing fast water permeation (ca. 109 water molecules per second) on the same magnitude as that of aquaporins. Water molecules are found to preferentially flow in single-file, branched chains within the POCs. This work widens the choice of water channel morphologies for water desalination applications.

7.
Angew Chem Int Ed Engl ; 59(25): 10151-10159, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31859381

RESUMO

The self-assembly of highly stable zirconium(IV)-based coordination cages with aggregation induced emission (AIE) molecular rotors for in vitro bio-imaging is reported. The two coordination cages, NUS-100 and NUS-101, are assembled from the highly stable trinuclear zirconium vertices and two flexible carboxyl-decorated tetraphenylethylene (TPE) spacers. Extensive experimental and theoretical results show that the emissive intensity of the coordination cages can be controlled by restricting the dynamics of AIE-active molecular rotors though multiple external stimuli. Because the two coordination cages have excellent chemical stability in aqueous solutions (pH stability: 2-10) and impressive AIE characteristics contributed by the molecular rotors, they can be employed as novel biological fluorescent probes for in vitro live-cell imaging.


Assuntos
Corantes Fluorescentes/química , Zircônio/química , Células HeLa , Humanos , Análise de Célula Única , Estilbenos
8.
Inorg Chem ; 57(21): 13631-13639, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30354141

RESUMO

Differentiation of xylene isomers remains as one of the most important challenges in the chemical industry, mainly due to the similar molecular sizes and boiling points of the three xylene isomers. Fluorescence-based chemical sensors have attracted wide attention due to their high sensitivity and versatile applications. Here, we report a novel fluorescent metal-organic framework named NUS-40, which is able to selectively detect and discriminate o-xylene from other xylene isomers. Suspension of NUS-40 in o-xylene produces a distinct red shift in the fluorescence emission compared to that in either m-xylene or p-xylene. Moreover, the extent of peak shift is dependent on the concentration of o-xylene in xylene isomer mixtures, and the observed linear correlation between fluorescence intensity and o-xylene concentration is beneficial for quantitative detection. The possible mechanism of such responsive fluorescence behavior was investigated by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and vapor sorption experiments. In addition, facile metalation of the porphyrin centers with metal ions provides an additional route to fine-tune the sensing properties.

9.
ACS Appl Mater Interfaces ; 9(43): 37848-37855, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28994577

RESUMO

Microporous metal-organic frameworks (MOFs) as building materials for molecular sieving membranes offer unique opportunities to tuning the pore size and chemical property. The recently reported polycrystalline Zr-MOF membranes have greatly expanded their applications from gas separation to water treatment. However, Zr-MOFs are notoriously known for their intrinsic defects caused by ligand/cluster missing, which may greatly affect the molecular sieving property of Zr-MOF membranes. Herein, we present the mitigation of ligand-missing defects in polycrystalline UiO-66(Zr)-(OH)2 membranes by postsynthetic defect healing (PSDH), which can help in increasing the membranes' Na+ rejection rate by 74.9%. Intriguingly, the membranes also exhibit excellent hydrothermal stability in aqueous solutions (>600 h). Our study proves the feasibility of PSDH in improving the performance of polycrystalline Zr-MOF membranes for water-treatment applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...