Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Asian J ; 19(1): e202300863, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37937970

RESUMO

We prepared an environmentally friendly intelligent Fe3 O4 @PMMA@PDMS superhydrophobic oil-absorbing material with simple process and excellent performance, and investigated the effects of different particle sizes of Fe3 O4 , different concentrations of PDMS, and different heating times on the superhydrophobicity of the coating. The best performance of the coating was achieved at a particle size combination of 20/500 nm for Fe3 O4 , a PDMS to Fe3 O4 @PMMA mass ratio of 6 : 1, and a heating time of 2 min at 400 °C. H2-SPSS coating not only has excellent superhydrophobicity, abrasion resistance, self-cleaning property, and chemical corrosion, but also has good flux and efficiency for separating oil-water mixture, with fluxes of 40,540, 32,432, and 37,027 Lm-2 h-1 for trichloromethane, dichloromethane and bromoethane, respectively, and separation efficiencies of 99.78 %, 99.74 % and 99.73 %, respectively. In addition, we also prepared a superhydrophobic magnetic polyurethane (SPPU) sponge using Fe3 O4 @PMMA@PDMS, which not only has a good oil absorption capacity of 18-44 g/g for different oil substances, it can also move directionally by magnet attraction and absorb oil along a fixed path. Under the control of the magnet, SPPU completes the whole oil absorption process in only 4 s, showing excellent oil absorption and intelligence.

2.
Chem Asian J ; 18(21): e202300680, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37712452

RESUMO

With the rapid advancement of technology, the wettability of conventional superhydrophobic materials no longer suffice to meet the demands of practical applications. Intelligent responsive superhydrophobic materials have emerged as a highly sought-after material in various fields. The exceptional superhydrophobicity, reversible wetting, and intelligently controllable characteristics of these materials have led to extensive applications across industries, including industry, agriculture, defense, and medicine. Therefore, the development of intelligent superhydrophobic materials with superior performance, economic practicality, enhanced sensitivity, and controllability assumes utmost importance in advancing technology worldwide. This article provides a summary of the wettability principles of superhydrophobic surfaces and the mechanisms behind intelligent responsive superhydrophobicity. Furthermore, it reviews and analyzes the recent research progress on light, electric, and magnetic responsive superhydrophobic materials, encompassing aspects such as material synthesis, modification, performance, and responses under diverse external stimuli. The article also explores the challenges associated with different types of responsive superhydrophobic materials and the unique application prospects of light, electric, and magnetic responsive superhydrophobic materials. Additionally, it outlines the future directions for the development of intelligent responsive superhydrophobic materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...