Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 313: 120856, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182956

RESUMO

Cellulose nanocrystal (CNC) hybrid materials with numerous optical states have great potential as anti-counterfeiting labels and information encryption materials. However, it is challenging to construct multicolor emitting materials with tunable behaviors, which can dramatically enhance anti-counterfeiting abilities. Here, free-standing composite films with vivid multi-structural colors and dual-emitting fluorescence are successfully fabricated through a host-guest coassembly strategy. The lanthanide complex and an aggregation-induced emission molecule (tetraphenylethylene derivative, TPEC) are selected as luminescent guests, which are integrated into the chiral nematic structure of CNCs. The obtained photonic films display broadband reflection across the visible spectrum, which may be attributed to the chiral nematic domains with variations in the helical pitches and helical axis orientations. Under 254 nm excitation, the film exhibits bright red emission, while blue-green emission switching occurs under 365 nm excitation. The broad reflection band of the film covers both the green and red fluorescent emission centers, and right circularly polarized luminescence emission with different dissymmetry factors is produced due to the selective reflection of the left chiral nematic structure. A large glum value up to -0.21 at 600 nm was realized. Additionally, CNC-based materials with tailored shapes are further used in anti-counterfeit tags and decorative applications.

2.
Carbohydr Polym ; 289: 119461, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35483862

RESUMO

Chiral nematic papers (CNPs) with mesopores structure based on cellulose nanocrystals (CNCs) were fabricated successfully via a swelling and freeze-drying method. The order of the original chiral nematic cellulose nanocrystals film was preserved in CNPs, which was proved by scanning electron microscopy (SEM), polarized optical microscopy (POM) measurements and circular dichroism (CD) spectra. The CNPs exhibited excellent optical responsive properties to different solvents. Inspired by this feature, a colorable ink containing amounts of gel particles was prepared by pulverizing CNPs/water mixture into a suspension. Patterns written in suspension ink with various colors can be formed when soaked with different solvents. Moreover, CNPs displayed an irreversible color response to compression. Additionally, the hydrophilicity of CNPs was tuned by polyethyleneimine. Modified CNPs exhibited different colors under the identical solvent environment when compared to the original one. Aqueous PEI can be used as an ink to depict responsive photonic patterns on CNPs.


Assuntos
Celulose , Nanopartículas , Celulose/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Solventes
3.
Polymers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918822

RESUMO

Multiresponsive hydrogels have attracted tremendous interest due to their promising applications in tissue engineering, wearable devices, and flexible electronics. In this work, we report a multiresponsive upper critical solution temperature (UCST) composite hydrogel based on poly (acrylic acid-co-acrylamide), PAAc-co-PAAm, sequentially cross-linked by acid-hydrolysis cellulose nanocrystals (CNCs). Scanning electron microscopy (SEM) observations demonstrated that the hydrogels are formed by densely cross-linked porous structures. The PAAc/PAAm/CNC hybrid hydrogels exhibit swelling and shrinking properties that can be induced by multiple stimuli, including temperature, pH, and salt concentration. The driving force of the volume transition is the formation and dissociation of hydrogen bonds in the hydrogels. A certain content of CNCs can greatly enhance the shrinkage capability and mechanical strength of the hybrid hydrogels, but an excess addition may impair the contractility of the hydrogel. Furthermore, the hydrogels can be used as a matrix to adsorb dyes, such as methylene blue (MB), for water purification. MB may be partly discharged from hydrogels by saline solutions, especially by those with high ionic strength. Notably, through temperature-controlled hydrogel swelling and shrinking, doxorubicin hydrochloride (DOX-HCl) can be controllably adsorbed and released from the prepared hydrogels.

4.
Carbohydr Polym ; 257: 117641, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33541665

RESUMO

Iridescent and luminescent composite films were fabricated through a coassembly strategy, in which glutathione-stabilized copper nanoclusters (GSH-CuNCs) were incorporated into chiral nematic structures of a cellulose nanocrystal (CNC) film. Through variations in the helical pitch, these composite films exhibited broadband reflection. The fluorescence emission spectrum of the composite film exhibited peaks at 439 and 600 nm, corresponding to crystallization-induced emission from CNCs and assembly-induced emission from CuNCs. The enhanced luminescence and prolonged lifetime of the composite film were attributed to the confinement effect of solid layers and attendant intermolecular interactions. By tuning the reaction time, temperature, and pH of the solution, the emission color and intensity of the CuNCs could be changed. At appropriate GSH and Cu2+ concentrations, the chiral organization of GSH-CuNCs enabled the composite CNC film to exhibit right-handed chiral fluorescence with an asymmetry factor of -0.16. Luminescent composite films were employed to fabricate LEDs with custom colors and patterns.

5.
ChemSusChem ; 13(17): 4478-4486, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32202697

RESUMO

Artificial antioxidants are synthesized from fossil sources and are now widely used in the polymer, food, and cosmetics industries. The gradual depletion of fossil resources makes it practically significant and necessary to produce green antioxidants from renewable lignocellulosic resources. Herein, short-time hydrothermal (STH) treatment was developed for production of lignin-derived polyphenol antioxidants (LPAs) from poplar wood under conditions of high temperature and high pressure. LPA yields from 21.5 to 37.6 % on the basis of lignin in untreated wood were obtained by STH treatments as result of lignin depolymerization at 190-200 °C and 10 MPa in 5-8 min. Depolymerization reactions were confirmed by the much lower molecular weight of LPA (1076 g mol-1 ) than that of native lignin (4094 g mol-1 ). NMR spectroscopy revealed the structural features of lignin in the isolated LPA, namely syringyl and guaiacyl units with well-preserved interunit linkages. A Folin-Ciocalteu assay indicated that each LPA molecule contained 5.4 phenolic hydroxyl groups on average, much more than other technical lignins. The remarkable antioxidant ability of LPA was verified by the radical-scavenging index of 53.5-67.3, much higher than 0.2-11.1 of the commercial antioxidants butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). STH treatment only requires water and heat for production of high-value antioxidant, which provides a green and sustainable method for the utilization of lignocelluloses.

6.
Carbohydr Polym ; 228: 115387, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31635736

RESUMO

A type of cellulose solvent, i.e., aqueous N-methylmorpholine- N-O xide (NMMO) solutions, was used to modify cellulose nanocrystal (CNC) photonic films. CNC films can be swollen by NMMO, resulting in red-shifted reflected colors. The swelling effect is supposed to come from NMMO permeation into the crystalline regions of individual CNCs and intercalating in between CNC particles. When NMMO was removed, the reflected colors of CNC films blue shifted because of the reduced helical pitches. NMMO-treated CNC films display reversible responsive colors to humidity changes in several minutes. Increasing NMMO content allows CNC films to enlarge the responsive color range. Aqueous NMMO can be used as an ink to depict responsive photonic patterns on CNC films. This post-treatment approach to producing responsive colors and photonic patterns in CNC films may be applied to the areas of sensor, anti-counterfeiting, and decoration.

7.
Nanoscale ; 11(20): 10088-10096, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31089649

RESUMO

Developing actuators with multi-responsibility, large deformation, and predefined shapes is critical for the application of actuators in the field of artificial intelligence. Herein, we report the preparation of a new type of unimorph actuators containing phenol-formaldelyde resin (PFR) and graphene oxide (GO) using the chiral nematic structure of cellulose nanocrystals (CNCs) as the template. The so-obtained PFR/GO films have a unimorph structure with an asymmetric distribution of GO across the film. They exhibit synchronous responses of both photonic properties and actuation to humidifying/dehumidifying. Moreover, PFR/GO films can be forged into desired shapes by aldehyde treatment, and thereby are able to produce complex movements. In addition, the objects with predetermined shapes show good shape recovery capability upon many wetting-drying cycles, especially through the treatment with formaldehyde. A mechanism model for shape predetermination by aldehyde treatment is suggested based on experimental details. By further designing the predetermined shapes and patterns, such PFR/GO actuators may hold great promise for smart actuation devices of highly complex movements.

8.
Carbohydr Polym ; 117: 414-421, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25498654

RESUMO

Based on the formation of cellulose hydrogels in NaOH/urea aqueous solvent media, cellulose self-assembly precursor is acquired. It is proved that the water uptake capability of the cellulose hydrogels depends highly on the cross-link degree (CLD) of cellulose. With varying CLD and concentration of cellulose, a variety of morphologies of cellulose self-assemblies, including sheets with perfect morphology, high-aspect-ratio fibers, and disorganized segments and network, are formed through evaporation. Furthermore, cellulose films are fabricated by diecasting and evaporating the cellulose hydrogels, resulting in a 3D-ordered structure of closely stacking of cellulose sheets. The mechanical test indicates both tensile strength and flexibility of the cellulose films are greatly improved, which is attributed to the formation of the orderly stacking of cellulose sheets. The study is expected to lay an important foundation on the preparation of ordered and high-strength cellulose materials.

9.
Carbohydr Polym ; 102: 431-7, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24507302

RESUMO

Homogenous cellulose/laponite aqueous dispersions and composite films were respectively prepared from the pre-cooling NaOH/urea aqueous systems. Rheological measurements of aqueous dispersions demonstrated a sol-to-gel transition triggered by loading of laponite, reflecting a cross-linkage effect of cellulose/laponite hybrids. Similarly, based on scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) characterizations, as well as mechanical and thermal measurements, the cross-linkage effect of cellulose/laponite hybrids was also found in solid films, which played an important role in improving the tensile strength (σb) of composite films. For instance, the σb exhibited a largest enhancement up to 75.7% at a critical laponite content of 0.100 wt%, indicating that the property of composite film was closely related with the dispersion and interaction state of laponite, i.e. its content in cellulose matrix. These results were expected to provide significant information for fabrication and utility of cellulose-based materials.

10.
Carbohydr Polym ; 102: 438-44, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24507303

RESUMO

A precooled aqueous solution of 7 wt% NaOH/12 wt% urea was used to dissolve cellulose up to a concentration of 2 wt%, which was then coagulated in an acetone/water mixture to regenerate cellulose film. The volume ratio of acetone to water (φ) had a dominant influence on film dimensional stability, film-forming ability, micromorphology, and mechanical strength. The film regenerated at φ=2.0 showed excellent performance in both dimensional stability and film-forming ability. Compared to that from pure acetone, the cellulose film from the acetone/water mixture with φ=2.0 was more densely interwoven, since the cellulosic fibrils formed during regeneration had pores with smaller average diameter. The alkali capsulated in the film during film formation could be released at quite a slow rate into the surrounding aqueous solution. The regenerated cellulose film with adjustable structure and properties may have potential applications in drug release and ultra filtration.


Assuntos
Acetona/química , Celulose/química , Água/química , Microscopia Eletrônica de Transmissão , Hidróxido de Sódio/química , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Tensão Superficial , Difração de Raios X
11.
Langmuir ; 28(25): 9355-64, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22646993

RESUMO

We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by (19)F NMR as well as (31)P NMR measurements. Upon replacement of NFDA by DEHPA, the signal from the (19)F atoms adjacent to the hydrophilic headgroup disappears and that from the (19)F atoms on the main chain becomes sharper. This could be interpreted as an increase of microfluidity in the mixed vesicle bilayers at higher content of DEHPA, whose alkyl chains are expected to have a lower chain melting point. Our results provide basic knowledge on vesicle formation and their structural evolution in salt-free catanionic surfactant systems containing mixed ion pairs, which may contribute to a deeper understanding of the rules governing the formation and properties of surfactant self-assembly.

12.
Langmuir ; 25(16): 8974-81, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19719214

RESUMO

A salt-free cationic and anionic (catanionic) surfactant system was formed by mixing a double-tailed di-(2-ethylhexyl) phosphoric acid (DEHPA, commercial name P204), which is an excellent extractant of rare earth metal ions, with a single-tailed cationic trimethyltetradecylammonium hydroxide (TTAOH) in water. With the mole ratio (r) of DEHPA to TTAOH varying from 0.9 to 1, the phase transition occurred from a densely stacked vesicle phase (Lalphav) to a lamellar phase (Lalphal). Macroscopic properties, such as polarization and rheology, were measured and changed greatly during the course of the phase transition. When r was 0.96 or 0.98, the steady state shear curves exhibited two yield stress values, indicating the coexistence of the Lalphav phase and the Lalphal phase. The Lalphal phase formed in the salt-free and zero-charged system (r=1.0) is defective and undulating, which was confirmed by cryogenic transmission electron microscopy (cryo-TEM). The deuterium nuclear magnetic resonance spectra (2H NMR) showed that a single peak (singlet) split into two symmetric peaks (doublet) gradually, indicating the phase transition from the Lalphav phase to the Lalphal phase. Correspondingly, phosphorus nuclear magnetic resonance spectra (31P NMR) presented changes in both the chemical shift and the peak width, indicating that these two types of bilayer structures are of different anisotropy degrees and different viscosities. When the Lalphal phase is subjected to a certain shear force, it can be reversed to a Lalphav phase again, which was proved by rheological, 2H NMR, and 31P NMR measurements. Furthermore, a theoretical consideration about the formation of the defective and undulating Lalphal phase was taken into account from a viewpoint of energy.


Assuntos
Tensoativos/química , Cátions/química , Espectroscopia de Ressonância Magnética , Organofosfatos/química , Transição de Fase , Viscosidade
13.
J Phys Chem B ; 112(5): 1414-9, 2008 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-18193862

RESUMO

In the phase diagram of an excellent extractant of rare earth metal ions, di(2-ethylhexyl) phosphate (HDEHP, commercial name P204), mixing with a cationic trimethyltetradecylammonium hydroxide (TTAOH) in water, a birefringent Lalpha phase was found, which consists of densely stacked multilamellar vesicles. The densely stacked multilamellar vesicles are remarkably deformed, as observed by means of cryotransmission electron microscopy (cryo-TEM). Further, self-assembled structures-oligovesicular vesicles, bilayer cylinders, and tubes joining with vesicles-were also observed. The self-assembled phase is transparent, anisotropic, and highly viscous, possessing elastic properties determined by rheological measurements. This is the first time that birefringent Lalpha phase with remarkably deformed amphiphilic bilayer membranes has been constructed through combining a hydrophobic organic extractant having double chains with a water-soluble surfactant having a single chain, which may direct primarily toward acquiring an understanding of the mechanism of salt-free catanionic vesicles and secondarily to determine if vesicle-extraction technology utilizing extractants is possible.


Assuntos
Cátions/química , Bicamadas Lipídicas/química , Membranas Artificiais , Nanotubos/química , Tensoativos/química , Microscopia Crioeletrônica , Elasticidade , Metais Terras Raras/química , Micelas , Reologia , Solventes , Compostos de Trimetil Amônio
14.
Soft Matter ; 4(8): 1639-1644, 2008 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32907158

RESUMO

Adding sodium salts to a dilute sodium laurate (SL) aqueous solution, slow phase transition was observed from the micelle solution to a gel phase. The phase-transition process has great resemblance to crystal salt-out. The observation by transmission electron microscopy (TEM) proved that the hydrogel is a network structure with interweaving fibers and ribbons, which can trap an aqueous solution. The images of high-resolution TEM (HR-TEM) indicated that each of the fibers and ribbons is composed of a bundle of parallel cylindrical nanofibers. Conductivity and in situ diffuse reflectance fourier-transform infrared (DR-FT-IR) spectroscopy measurements indicated that gel formation was induced due to a crystallization of rod micelles by Na+ ions bonding to the oxygen groups of salts of fatty carboxylates. Differential scanning calorimetry (DSC) showed that the increase of either the chain length of sodium soaps or the concentration of Na+ counter-ions promoted the growth of the nanofibers. We speculated that the phase transition from the micelle solution to the gel phase is a result of a crystallization of rod micelles induced by sodium ions.

15.
J Colloid Interface Sci ; 302(2): 673-81, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16887136

RESUMO

Acidic surfactants, single- and bi-2-methylheptanol polyethenoxy ether phosphate esters, H2PO3(OCH2CH2)nOCH2CH2CH2CH2CH2CH(CH3)2 (u-MHPEPE) and HPO3[(OCH2CH2)nOCH2CH2CH2CH2CH2CH(CH3)2]2 (d-MHPEPE), where n approximately 4, were synthesized. Phase behavior of u- and d-MHPEPE (u- and d-MHPEPE mixtures were abbreviated as MHPEPE) mixtures in aqueous solutions and vesicle formation were determined. Surface tension measurements showed that u-MHPEPE and MHPEPE have low surface tensions at critical micelle concentrations. gamma(cmc)=29.0 mNm(-1) and cmc=16.0 mmolL(-1) for u-MHPEPE, MHPEPE has two transition points suggesting the mixtures of u- and d-MHPEPE with gamma(cmc1)=30.5 mNm(-1) and cmc1=4.0 mmolL(-1), and gamma(cmc2)=27.3 mNm(-1) and cmc2=42.0 mmolL(-1). These values, specific gamma(cmc), are much lower than those of traditionally cationic or anionic surfactants such as cetyltrimethylammonium bromide (CTAB, gamma(cmc)=37.1 mNm(-1) at cmc=0.92 mmolL(-1)) and sodium dodecyl sulfate (SDS, gamma(cmc)=39.0 mNm(-1) at cmc=8.1 mmolL(-1)). Rich phase behavior was observed with increasing MHPEPE concentration, an isotropic L(1)-phase (micelle solution), an unstable emulsion-region (with time, the samples separate into two-phase), a transparently bluish and birefringent Lalpha-phase up to 200 mmol L(-1) with unilamellar and multilamellar vesicles. These unilamellar and multilamellar vesicles were demonstrated by using staining transmission electron microscopy (staining-TEM), which were compared to freeze-fracture TEM (FF-TEM). The vesicle-phase is stable for at least 1 year. Vesicle formation possibly could be explained in harmonization of the hydrophobic force of acidic surfactant tails, the hydrogen bonding (H-bonding) and the electrostatic interaction among polar headgroups of PEO ether phosphate ester. Phase transition from the flow birefringent unilamellar vesicles induced by addition of HCl, NaCl, NaOH, and increasing temperature has been observed. Surprisingly, for u-MHPEPE or d-MHPEPE in water, we just observed L1-phase (micelle solution) with increasing u-MHPEPE or d-MHPEPE concentration.


Assuntos
Ésteres/química , Organofosfatos/química , Tensoativos/química , Ésteres/síntese química , Micelas , Estrutura Molecular , Tamanho da Partícula , Soluções/química , Tensão Superficial , Tensoativos/síntese química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...