Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 152(Pt 12): 3575-3583, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17159210

RESUMO

Secondary and tertiary amino groups were introduced into polymer chains grafted onto a polyethylene flat-sheet membrane to evaluate the effects of surface properties on the adhesion and viability of a strain of the Gram-negative bacterium Escherichia coli and a strain of the Gram-positive bacterium Bacillus subtilis. The characterization of the surfaces containing amino groups, i.e. ethylamino (EA) and diethylamino (DEA) groups, revealed that the membrane potentials are proportional to amino-group densities and contact angle hysteresis. A high bacterial adhesion rate constant k was observed at high membrane potential, which indicates that membrane potential could be used as an indicator for estimating bacterial adhesion to the EA and DEA sheets, especially in B. subtilis. The bacterial adhesion rate constant of E. coli markedly increased at a membrane potential higher than -7.8 mV, whereas that of B. subtilis increased at a membrane potential higher than -8.3 mV, at which the dominant effect on bacterial adhesion is expected to change. The viability experiments revealed that approximately 80% of E. coli cells adhering to the sheets with high membrane potential were inactivated after a contact time of 8 h, whereas 60% of B. subtilis cells were inactivated. Furthermore, E. coli viability significantly decreased at a membrane potential higher than -8 mV, whereas B. subtilis viability decreased as membrane potential increased, which reflects differences in cell wall structure between E. coli and B. subtilis.


Assuntos
Aderência Bacteriana , Escherichia coli/fisiologia , Viabilidade Microbiana , Polímeros/química , Bacillus subtilis/fisiologia , Potenciais da Membrana
2.
Colloids Surf B Biointerfaces ; 43(2): 99-107, 2005 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-15922579

RESUMO

Surface-modified polyethylene (PE) membrane sheets were prepared by the radiation-induced graft polymerization (RIGP) of an epoxy-group-containing monomer, glycidyl methacrylate (GMA). The epoxy ring of GMA was opened by introducing diethylamine (DEA) or sodium sulfite (SS). We examined the properties of these sheets by measuring the amount of grafting polymer, surface roughness and membrane potential, and also investigated the adhesion of five Gram-negative bacteria, Escherichia coli, Pseudomonas aeruginosa, Pseudomonas putida, Pseudomonas fluorescens and Paracoccus denitrificans, onto the prepared sheet surfaces. A linear relationship between the degree of grafting (dg) and surface roughness was observed. Moreover, membrane potential was dependent on the amount of DEA or SS as the ionizable group. These results indicate that RIGP enables the control of the physicochemical properties of such a sheet surface by adjusting dg and the subsequent conversion of functional groups. A batch test on bacterial adhesion onto the sheets clarified that the DEA-containing sheet (DEA sheet) exhibited an adhesion rate constant, k, significantly greater than those of other types of sheet. Clearly, the adhesion rate constant of the DEA sheet increased with dg, indicating that electrostatic interaction is the most decisive factor for bacterial adhesion when it works as an attractive force. Furthermore, the densities of bacteria adhering onto the GMA-containing sheet (GMA sheet) and the SS-containing sheet (SS sheet) were almost the same as that onto a PE sheet, whereas that onto a DEA sheet significantly increased. Thus, the introduction of the GMA- and SS-containing graft chain did not have much influence on bacterial adhesion onto the surfaces, supporting the conclusion that the promotion of bacterial adhesion onto the GMA and SS sheets was due to an increase in surface area resulting from RIGP. Moreover, the scanning electron microscopy images of the sheet surfaces indicate that the conditions and morphologies of initial bacterial adhesion are dependent on surface properties, particularly membrane potential.


Assuntos
Aderência Bacteriana/fisiologia , Bactérias Gram-Negativas/fisiologia , Membranas Artificiais , Polímeros
3.
FEMS Microbiol Lett ; 223(2): 287-92, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12829300

RESUMO

The influence of extracellular polymeric substances (EPS) on bacterial cell adhesion onto solid surfaces was investigated using 27 heterotrophic bacterial strains isolated from a wastewater treatment reactor. Cell adhesion onto glass beads was carried out by the packed-bed method and the results were discussed in terms of the amount of each EPS component produced and cell surface characteristics such as zeta potential and hydrophobicity. Protein and polysaccharides accounted for 75-89% of the EPS composition, indicating that they are the major EPS components. Among the polysaccharides, the amounts of hexose, hexosamine and ketose were relatively high in EPS-rich strains. For EPS-poor strains, the efficiency of cell adhesion onto glass beads increased as the absolute values of zeta potential decreased, suggesting that electrostatic interaction suppresses cell adhesion efficiency. On the other hand, the amounts of hexose and pentose exhibited good correlations with cell adhesiveness for EPS-rich strains, indicating that polymeric interaction due to the EPS covering on the cell surface promoted cell adhesion. It was concluded that, if the EPS amount is relatively small, cell adhesion onto solid surfaces is inhibited by electrostatic interaction, and if it is relatively large, cell adhesion is enhanced by polymeric interaction.


Assuntos
Bactérias/crescimento & desenvolvimento , Aderência Bacteriana/fisiologia , Vidro , Biofilmes , Biomassa , Interações Hidrofóbicas e Hidrofílicas , Microesferas , Polímeros , Eletricidade Estática , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...