Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 18(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337924

RESUMO

To investigate the effect of aging at 580 °C in wet air (humid aging) on the oxygen adsorption on the surface of SnO2 particles, the electric properties and the sensor response to hydrogen in dry and humid atmospheres for SnO2 resistive-type gas sensors were evaluated. The electric resistance in dry and wet atmospheres at 350 °C was strongly increased by humid aging. From the results of oxygen partial pressure dependence of the electric resistance, the oxygen adsorption equilibrium constants (K1; for O- adsorption, K2; for O2- adsorption) were estimated on the basis of the theoretical model of oxygen adsorption. The K1 and K2 in dry and wet atmospheres at 350 °C were increased by humid aging at 580 °C, indicating an increase in the adsorption amount of both O- and O2-. These results suggest that hydroxyl poisoning on the oxygen adsorption is suppressed by humid aging. The sensor response to hydrogen in dry and wet atmosphere at 350 °C was clearly improved by humid aging. Such an improvement of the sensor response seems to be caused by increasing the oxygen adsorption amount. Thus, the humid aging offers an effective way to improve the sensor response of SnO2 resistive-type gas sensors in dry and wet atmospheres.

2.
Inorg Chem ; 54(16): 7840-5, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26237216

RESUMO

The p-type nanocrystals (NCs) of copper-based chalcogenides, such as CuInSe2 and Cu2ZnSnS4, have attracted increasing attention in photovoltaic applications due to their potential to produce cheap solution-processed solar cells. Herein, we report the synthesis of copper-antimony-sulfide (CAS) NCs with different crystal phases including CuSbS2, Cu3SbS4, and Cu12Sb4S13. In addition, their morphology, crystal phase, and optical properties were characterized using transmission electron microscopy, X-ray diffractometry, UV-vis-near-IR spectroscopy, and photoemission yield spectroscopy. The morphology, crystal phase, and electronic structure were significantly dependent on the chemical composition in the CAS system. Devices were fabricated using particulate films consisting of CAS NCs prepared by spin coating without a high-temperature treatment. The CAS NC-based devices exhibited a diode-like current-voltage characteristic when coupled with an n-type CdS layer. In particular, the CuSbS2 NC devices exhibited photovoltaic responses under simulated sunlight, demonstrating its applicability for use in solution-processed solar cells.

3.
Anal Chem ; 87(16): 8407-15, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26196499

RESUMO

Real-time monitoring of specific gas concentrations with a compact and portable gas sensing device is required to sense potential health risk and danger from toxic gases. For such purposes, we developed an ultrasmall gas sensor device, where a micro sensing film was deposited on a micro heater integrated with electrodes fabricated by the microelectromechanical system (MEMS) technology. The developed device was operated in a pulse-heating mode to significantly reduce the heater power consumption and make the device battery-driven and portable. Using clustered Pd/SnO2 nanoparticles, we succeeded in introducing mesopores ranging from 10 to 30 nm in the micro gas sensing film (area: ϕ 150 µm) to detect large volatile organic compounds (VOCs). The micro sensor showed quick, stable, and high sensor responses to toluene at ppm (parts per million) concentrations at 300 °C even by operating the micro heater in a pulse-heating mode where switch-on and -off cycles were repeated at one-second intervals. The high performance of the micro sensor should result from the creation of efficient diffusion paths decorated with Pd sensitizers by using the clustered Pd/SnO2 nanoparticles. Hence we demonstrate that our pulse-driven micro sensor using nanostructured oxide materials holds promise as a battery-operable, portable gas sensing device.


Assuntos
Técnicas Eletroquímicas/métodos , Gases/análise , Chumbo/química , Nanopartículas Metálicas/química , Compostos de Estanho/química , Técnicas Eletroquímicas/instrumentação , Eletrodos , Nanopartículas Metálicas/ultraestrutura , Sistemas Microeletromecânicos , Porosidade , Tolueno/análise , Compostos Orgânicos Voláteis/análise
4.
ACS Appl Mater Interfaces ; 7(28): 15618-25, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26111855

RESUMO

Pd particles of different nanosizes were loaded on the SnO2 surface by using different Pd precursors for the purpose of investigating the Pd size effect on gas sensing properties in humid atmosphere. One kind of Pd-loaded SnO2 nanoparticle was characterized by smaller Pd particles (2.6 nm) with high dispersion, while another kind was characterized by larger Pd particles (5-10 nm) with low dispersion. It was found that both kinds of Pd on the SnO2 surface let the mainly adsorbed oxygen species change from O(-) to O(2-) in humid atmosphere at 350 °C. In addition, the water vapor poisoning effect on electric resistance and sensor response was greatly reduced by loading Pd. Interestingly, for the CO response at 350 °C, Pd-SnO2 with small Pd size showed almost constant sensor response with varying humidity (0.5-4 vol % H2O). While the CO response of Pd-SnO2 with large Pd size even increased with increasing amount of water vapor. Moreover, the former CO response was increased from 300 to 350 °C, but the later response decreased with increase in operating temperature. These behaviors were analyzed by temperature programed reduction (TPR) in H2 and CO atmospheres, and they were supported by the different catalytic activities of different nanosized Pd particles.

5.
Chemistry ; 21(20): 7462-9, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25820419

RESUMO

Recently, the process by which energy is transferred from photoexcited semiconductor nanocrystals, called quantum dots (QDs), to other semiconductors has attracted much attention and has potential application in solar energy conversion (i.e., QD-sensitized solar cells). Sensitization of wide band gap polyoxometalates (POMs) to visible light by using CuInS2 QDs dispersed in an organic solution is demonstrated herein. Photoluminescence quenching and lifetime studies revealed efficient electron transfer from the CuInS2 QDs to POMs, such as SiW12 O40 and W10 O32 , that were hybridized with a cationic surfactant. CuInS2 QDs function as an antenna that absorbs visible light and supplies electrons to the POMs to enable certain photocatalytic reactions, including noble-metal-ion reduction. The photoenergy storage capabilities of the QD-POM system, in which electrons photogenerated in QDs by visible-light excitation are trapped and accommodated by POMs to form reduced POM, are also demonstrated. Electrons stored in the POM can be later discharged through reductive reactions, such as oxygen reduction, in the dark.

6.
ACS Appl Mater Interfaces ; 7(10): 5863-9, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25734500

RESUMO

The effect of water vapor on Pd-loaded SnO2 sensor was investigated through the oxygen adsorption behavior and sensing properties toward hydrogen and CO under different humidity conditions. On the basis of the theoretical model reported previously, it was found that the mainly adsorbed oxygen species on the SnO2 surface in humid atmosphere was changed by loading Pd, more specifically, for neat SnO2 was O(-), while for 0.7% Pd-SnO2 was O(2-). The water vapor poisoning effect on electric resistance and sensor response was reduced by loading Pd. Moreover the sensor response in wet atmosphere was greatly enhanced by loading Pd. It seems that the electron depletion layer by p-n junction of PdO-SnO2 may impede OH(-) adsorption.

7.
ACS Appl Mater Interfaces ; 6(7): 5319-26, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24635838

RESUMO

Gas sensing with nanosized oxide materials is attracting much attention because of its promising capability of detecting various toxic gases at very low concentrations. In this study, using clustered SnO2 nanoparticles formed by controlled particle aggregation, we fabricated highly sensitive gas sensing films to detect large gas molecules such as toluene. A hydrothermal method using stanic acid (SnO2·nH2O) gel as a precursor produced monodispersed SnO2 nanoparticles of ca. 5 nm at pH 10.6. Decreasing the solution pH to 9.3 formed SnO2 clusters of ca. 45 nm that were assemblies of the monodispersed nanoparticles, as determined by dynamic light scattering, X-ray diffraction, and transmission electron microscopy analyses. Porous gas sensing films were successfully fabricated by a spin-coating method using the clustered nanoparticles due to the loose packing of the larger aggregated particles. The sensor devices using the porous films showed improved sensor responses (sensitivities) to H2 and CO at 300 °C. The enhanced sensitivity resulted from an increase in the film's porosity, which promoted the gas diffusivity of the sensing films. Pd loading onto the clustered nanoparticles further upgraded the sensor response due to catalytic and electrical sensitization effects of Pd. In particular, the Pd-loaded SnO2 nanoparticle clusters showed excellent sensitivity to toluene, able to detect it at down to low ppb levels.

8.
Langmuir ; 30(9): 2571-9, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24520922

RESUMO

Tungsten trioxide (WO3) is one of the important multifunctional materials used for photocatalytic, photoelectrochemical, battery, and gas sensor applications. Nanostructured WO3 holds great potential for enhancing the performance of these applications. Here, we report highly sensitive NO2 sensors using WO3 nanolamellae and their sensitivity improvement by morphology control using SnO2 nanoparticles. WO3 nanolamellae were synthesized by an acidification method starting from Na2WO4 and H2SO4 and subsequent calcination at 300 °C. The lamellae were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which clearly showed the formation of single-crystalline nanolamellae with a c-axis orientation. The stacking of each nanolamella to form larger lamellae that were 50-250 nm in lateral size and 15-25 nm in thickness was also revealed. From pore size distribution measurements, we found that introducing monodisperse SnO2 nanoparticles (ca. 4 nm) into WO3 lamella-based films improved their porosity, most likely because of effective insertion of nanoparticles into lamella stacks or in between assemblies of lamella stacks. In contrast, the crystallite size was not significantly changed, even by introducing SnO2. Because of the improvement in porosity, the composites of WO3 nanolamellae and SnO2 nanoparticles displayed enhanced sensitivity (sensor response) to NO2 at dilute concentrations of 20-1000 ppb in air, demonstrating the effectiveness of microstructure control of WO3 lamella-based films for highly sensitive NO2 detection. Electrical sensitization by SnO2 nanoparticles was also considered.

9.
Langmuir ; 29(7): 2128-35, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23323882

RESUMO

In recent years, the recovery of noble metals from waste has become very important because of their scarcity and increasing consumption. In this study, we attempt the photochemical recovery of noble metals from solutions using inorganic-organic hybrid photocatalysts. These catalysts are based on polyoxometalates such as PMo(12)O(40)(3-), SiW(12)O(40)(4-), and γ-SiW(10)O(36)(8-) coupled with a cationic surfactant, dimethyldioctadecylammonium (DODA). The three different photocatalysts dissolved in chloroform were successful in photoreducing gold ions dissolved in water in a two-phase (chloroform/water) system under UV irradiation (λ < 475 nm). The γ-SiW(10)O(36)/DODA photocatalyst exhibited the best activity and recovered gold from solution efficiently. It was suggested that one-electron reduced γ-SiW(10)O(36)(9-) formed by the UV irradiation reduced gold ions. As a result, large two-dimensional particles (gold nanosheets) were produced using the γ-SiW(10)O(36)/DODA photocatalyst, indicating that the reduction of gold ions occurred at the interface between chloroform and water. The γ-SiW(10)O(36)/DODA photocatalyst was able to recover metals such as platinum, silver, palladium, and copper from deaerated solutions. The selective recovery of gold is possible by controlling pH and oxygen concentration in the reaction system.


Assuntos
Metais/química , Soluções/química , Tensoativos/química , Catálise , Cobre/química , Paládio/química , Platina/química , Compostos de Amônio Quaternário/química , Prata/química
10.
ACS Appl Mater Interfaces ; 4(8): 4231-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22869519

RESUMO

A stable sol suspension of Pd-loaded SnO(2) nanocrystals, which is valid for both fundamental studies of semiconductor gas sensor and fabrications of a micro gas sensor, was fabricated by the photochemical deposition of PdCl(4)(2-) onto SnO(2) in an aqueous solution. UV light was irradiated on a mixture of a SnO(2) sol obtained through a hydrothermal treatment of stannic acid gel in the presence of PdCl(4)(2-) and ethanol/water at pH 2. A stable sol suspension of Pd-loaded SnO(2) was successfully obtained by controlling the pH of the above suspension to 10.5 after UV irradiation. Thin-film type sensor devices (film thickness ∼200 nm) using Pd-loaded SnO(2) nanocrystal were successfully fabricated by a spin-coating method. Gas sensing measurements showed that the deposition of Pd on the SnO(2) nanocrystals resulted in large electrical sensitization effect. The maximum gas sensitization effect was obtained at 0.125 mol % Pd loading. Moreover, the Pd loading lowered the temperature, in which the maximum sensor response to H(2) was obtained, due to the efficient catalytic combustion of H(2) on Pd.

12.
Mol Cell Biochem ; 273(1-2): 117-26, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-16013446

RESUMO

Our previous study showed the local production of gamma-aminobutyrate (GABA) in hypertrophic-zone chondrocytes of the rat tibial growth plate, an important long bone growth site. The aim of this study was to identify the presence of GABA receptors in growth plate chondrocytes by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. Chondrocytes expressed both GABA(A) and GABA(B) receptor subunit mRNAs as well as the corresponding proteins necessary for the assembly of functional receptors. The GABA(A) receptor subunits detected included alpha1-alpha4, alpha6, beta1-beta3, and delta, and both R1 and R2 subunits of GABA(B) receptors were detected. All receptor subunits were expressed in chondrocytes of the proliferative and hypertrophic zones. These results suggest that GABA is an autocrine/paracrine factor that regulates the physiological state of the growth plate. Subsequent studies with the mouse chondrogenic cell line ATDC5 showed the presence of mRNAs and the corresponding proteins for GABA(A) receptor alpha1, beta2, and beta3 subunits and GABA(B) receptor R1 and R2 subunits. GABA, muscimol (a GABA(A) receptor agonist), and baclofen (a GABA(B) receptor agonist) increased 5-bromodeoxyuridine (BrdU) incorporation into ATDC5 cells. The effect of muscimol was blocked by bicuculline (a GABA(A) receptor antagonist), and the effect of baclofen was blocked by CGP 35348 (a GABA(B) receptor antagonist). These results suggest that GABA contributes to the ATDC5 cell proliferation via GABA(A) and GABA(B) receptors and these mechanisms may be involved in cartilaginous cell growth.


Assuntos
Proliferação de Células , Condrócitos/metabolismo , Lâmina de Crescimento/metabolismo , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Animais , Células Cultivadas , Condrócitos/efeitos dos fármacos , Moduladores GABAérgicos/farmacologia , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos ICR , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...