Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 96(6): 063002, 2006 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-16605989

RESUMO

We study analytically the photoionization of a coherent superposition of electronic states and show that chirped pulses can measure attosecond time scale electron dynamics just as effectively as transform-limited attosecond pulses of the same bandwidth. The chirped pulse with a frequency-dependent phase creates the interfering photoelectron amplitudes that measure the electron dynamics. We show that at a given pump-probe time delay the differential asymmetry oscillates as a function of photoelectron energy. Our results suggest that the important parameter for attosecond science is not the pulse duration, but the bandwidth of phased radiation.

2.
Phys Rev Lett ; 93(22): 223003, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15601087

RESUMO

We solve the time-dependent Schrödinger equation in three dimensions for H+2 in a one-cycle laser pulse of moderate intensity. We consider fixed nuclear positions and Coulomb electron-nuclear interaction potentials. We analyze the field-induced electron interference and diffraction patterns. To extract the ionization dynamics we subtract the excitations to low-lying bound states explicitly. We follow the time evolution of a well-defined wave packet that is formed near the first peak of the laser field. We observe the fragmentation of the wave packet due to molecular focusing. We show how to retrieve a diffraction molecular image by taking the ratio of the momentum distributions in the two lateral directions. The positions of the diffraction peaks are well described by the classical double slit diffraction rule.

3.
Phys Rev Lett ; 90(7): 073902, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12633228

RESUMO

We show that the complete characterization of arbitrarily short isolated attosecond x-ray pulses can be achieved by applying spectral shearing interferometry to photoelectron wave packets. These wave packets are coherently produced through the photoionization of atoms by two time-delayed replicas of the x-ray pulse, and are shifted in energy with respect to each other by simultaneously applying a strong laser field. The x-ray pulse is reconstructed with the algorithm developed for optical pulses, which requires no knowledge of ionization physics. Using a 800-nm shearing field, x-ray pulses shorter than approximately 400 asec can be fully characterized.

4.
Phys Rev Lett ; 88(17): 173903, 2002 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-12005756

RESUMO

An electron generated by x-ray photoionization can be deflected by a strong laser field. Its energy and angular distribution depends on the phase of the laser field at the time of ionization. This phase dependence can be used to measure the duration and chirp of single sub100-attosecond x-ray pulses.

5.
Phys Rev Lett ; 86(16): 3522-5, 2001 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-11328013

RESUMO

In intense field ionization, an electron removed from the atomic core oscillates in the combined fields of the laser and the parent ion. This oscillation forces repeated revivals of its spatial correlation with the bound electrons. The total probability of double ionization depends on the number of returns and therefore on the number of optical periods in the laser pulse. We observed the yield of Ne(2+) relative to Ne(+) with 12 fs pulses to be clearly less compared to 50 fs pulses in qualitative agreement with our theoretical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...