Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rep Prog Phys ; 81(9): 094401, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29862989

RESUMO

Probing an atomic resonance without disturbing it is an ubiquitous issue in physics. This problem is critical in high-accuracy spectroscopy or for the next generation of atomic optical clocks. Ultra-high resolution frequency metrology requires sophisticated interrogation schemes and robust protocols handling pulse length errors and residual frequency detuning offsets. This review reports recent progress and perspective in such schemes, using sequences of composite laser-pulses tailored in pulse duration, frequency and phase, inspired by NMR techniques and quantum information processing. After a short presentation of Rabi technique and NMR-like composite pulses allowing efficient compensation of electromagnetic field perturbations to achieve robust population transfers, composite laser-pulses are investigated within Ramsey's method of separated oscillating fields in order to generate non-linear compensation of probe-induced frequency shifts. Laser-pulses protocols such as hyper-Ramsey, modified hyper-Ramsey, generalized hyper-Ramsey and hybrid schemes as auto-balanced Ramsey spectroscopy are reviewed. These techniques provide excellent protection against both probe induced light-shift perturbations and laser intensity variations. More sophisticated schemes generating synthetic frequency-shifts are presented. They allow to reduce or completely eliminate imperfect correction of probe-induced frequency-shifts even in presence of decoherence due to the laser line-width. Finally, two universal protocols are presented which provide complete elimination of probe-induced frequency shifts in the general case where both decoherence and relaxation dissipation effects are present by using exact analytic expressions for phase-shifts and the clock frequency detuning. These techniques might be applied to atomic, molecular and nuclear frequency metrology, Ramsey-type mass spectrometry as well as precision spectroscopy.

2.
Opt Lett ; 31(15): 2353-5, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16832483

RESUMO

We report an experimental comparison of three-photon-absorption resonances (N-resonances) for the D1 and D2 optical transitions of thermal (87)Rb vapor. We find that the D2 N-resonance has better contrast, a broader linewidth, and a more symmetric line shape than the D1 N-resonance. Taken together, these factors imply superior performance for frequency standards operating on alkali D2 N-resonances, in contrast with coherent population trapping resonances, for which the D2 transition provides poorer frequency standard performance than the D1 transition.

3.
Opt Lett ; 31(5): 622-4, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16570418

RESUMO

We demonstrate that first-order light shifts can be canceled for an all-optical, three-photon-absorption resonance (N-resonance) on the D1 transition of 87Rb. This light-shift cancellation facilitates improved frequency stability for an N-resonance clock. For example, by using a tabletop apparatus designed for N-resonance spectroscopy, we measured a short-term fractional frequency stability (Allan deviation) of approximately/= 1.5 x 10(-11) tao1/2 for observation times of 1 s < or = tao < or = 50 s. Further improvements in frequency stability should be possible with an apparatus designed as a dedicated N-resonance clock.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...