Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732388

RESUMO

Local actions of stressors induce electrical signals (ESs), influencing photosynthetic processes and probably increasing tolerance to adverse factors in higher plants. However, the participation of well-known depolarization ESs (action potentials and variation potentials) in these responses seems to be rare under natural conditions, particularly in the case of variation potentials, which are induced by extreme stressors (e.g., burning). Earlier, we showed that the local action of moderate heating and illumination can induce low-amplitude hyperpolarization ESs influencing photosynthetic light reactions in wheat plants cultivated in a vegetation room. In the current work, we analyzed ESs and changes in photosynthetic light reactions and drought tolerance that were induced by a combination of moderate heating and illumination in wheat plants cultivated under open-ground conditions. It was shown that the local heating and illumination induced low-amplitude ESs, and the type of signal (depolarization or hyperpolarization) was dependent on distance from the irritated zone and wheat age. Induction of depolarization ESs was not accompanied by photosynthetic changes in plants under favorable conditions or under weak drought. In contrast, the changes were observed after induction of these signals under moderate drought. Increasing drought tolerance was also observed in the last case. Thus, low-amplitude ESs can participate in photosynthetic regulation and increase tolerance to drought in plants cultivated under open-ground conditions.

2.
Plants (Basel) ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732477

RESUMO

Approaches for remote sensing can be used to estimate the influence of changes in environmental conditions on terrestrial plants, providing timely protection of their growth, development, and productivity. Different optical methods, including the informative multispectral and hyperspectral imaging of reflected light, can be used for plant remote sensing; however, multispectral and hyperspectral cameras are technically complex and have a high cost. RGB imaging based on the analysis of color images of plants is definitely simpler and more accessible, but using this tool for remote sensing plant characteristics under changeable environmental conditions requires the development of methods to increase its informativity. Our review focused on using RGB imaging for remote sensing the characteristics of terrestrial plants. In this review, we considered different color models, methods of exclusion of background in color images of plant canopies, and various color indices and their relations to characteristics of plants, using regression models, texture analysis, and machine learning for the estimation of these characteristics based on color images, and some approaches to provide transformation of simple color images to hyperspectral and multispectral images. As a whole, our review shows that RGB imaging can be an effective tool for estimating plant characteristics; however, further development of methods to analyze color images of plants is necessary.

3.
Front Plant Sci ; 15: 1344826, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371404

RESUMO

Early prediction of important agricultural traits in wheat opens up broad prospects for the development of approaches to accelerate the selection of genotypes for further breeding trials. This study is devoted to the search for predictors of biomass accumulation and tolerance of wheat to abiotic stressors. Hyperspectral (HS) and chlorophyll fluorescence (ChlF) parameters were analyzed as predictors under laboratory conditions. The predictive ability of reflectance and normalized difference indices (NDIs), as well as their relationship with parameters of photosynthetic activity, which is a key process influencing organic matter production and crop yields, were analyzed. HS parameters calculated using the wavelengths in Red (R) band and the spectral range next to the red edge (FR-NIR) were found to be correlated with biomass accumulation. The same ranges showed potential for predicting wheat tolerance to elevated temperatures. The relationship of HS predictors with biomass accumulation and heat tolerance were of opposite sign. A number of ChlF parameters also showed statistically significant correlation with biomass accumulation and heat tolerance. A correlation between HS and ChlF parameters, that demonstrated potential for predicting biomass accumulation and tolerance, has been shown. No predictors of drought tolerance were found among the HS and ChlF parameters analyzed.

4.
Biochemistry (Mosc) ; 88(10): 1488-1503, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105019

RESUMO

Action of numerous adverse environmental factors on higher plants is spatially-heterogenous; it means that induction of a systemic adaptive response requires generation and transmission of the stress signals. Electrical signals (ESs) induced by local action of stressors include action potential, variation potential, and system potential and they participate in formation of fast physiological changes at the level of a whole plant, including photosynthetic responses. Generation of these ESs is accompanied by the changes in activity of H+-ATPase, which is the main system of electrogenic proton transport across the plasma membrane. Literature data show that the changes in H+-ATPase activity and related changes in intra- and extracellular pH play a key role in the ES-induced inactivation of photosynthesis in non-irritated parts of plants. This inactivation is caused by both suppression of CO2 influx into mesophyll cells in leaves, which can be induced by the apoplast alkalization and, probably, cytoplasm acidification, and direct influence of acidification of stroma and lumen of chloroplasts on light and, probably, dark photosynthetic reactions. The ES-induced inactivation of photosynthesis results in the increasing tolerance of photosynthetic machinery to the action of adverse factors and probability of the plant survival.


Assuntos
Fotossíntese , ATPases Translocadoras de Prótons , Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Cloroplastos/metabolismo , Folhas de Planta/metabolismo , Plantas/metabolismo
5.
Plants (Basel) ; 12(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37765375

RESUMO

Photodamage of photosynthetic electron transport is a key mechanism of disruption of photosynthesis in plants under action of stressors. This means that investigation of photodamage is an important task for basic and applied investigations. However, its complex mechanisms restrict using experimental methods of investigation for this process; the development of mathematical models of photodamage and model-based analysis can be used for overcoming these restrictions. In the current work, we developed the modified Farquhar-von Caemmerer-Berry model which describes photodamage of photosynthetic electron transport in C3 plants. This model was parameterized on the basis of experimental results (using an example of pea plants). Analysis of the model showed that combined inactivation of linear electron flow and Rubisco could induce both increasing and decreasing photodamage at different magnitudes of inactivation of these processes. Simulation of photodamage under different temperatures and light intensities showed that simulated temperature dependences could be multi-phase; particularly, paradoxical increases in the thermal tolerance of photosynthetic electron transport could be observed under high temperatures (37-42 °C). Finally, it was shown that changes in temperature optimums of linear electron flow and Rubisco could modify temperature dependences of the final activity of photosynthetic electron transport under photodamage induction; however, these changes mainly stimulated its photodamage. Thus, our work provides a new theoretical tool for investigation of photodamage of photosynthetic processes in C3 plants and shows that this photodamage can be intricately dependent on parameters of changes in activities of linear electron flow and Rubisco including changes induced by temperature.

6.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447131

RESUMO

Long-distance electrical signals caused by the local action of stressors influence numerous physiological processes in plants including photosynthesis and increase their tolerance to the action of adverse factors. Depolarization electrical signals were mainly investigated; however, we earlier showed that hyperpolarization electrical signals (HESs) can be caused by moderate stressors (e.g., local moderate heating) and induce photosynthetic inactivation. We hypothesized that HESs are related to stressor-induced increases in the hydrostatic pressure in the zone of action of the stressor and following the propagation of a hydraulic wave. In the current work, we tested this hypothesis through the direct investigation of electrical signals induced by the local action of artificially increased pressure and an analysis of the subsequent photosynthetic changes in the nonirritated parts of plants. The electrical signals and parameters of photosynthetic light reactions were investigated in wheat plants. The local action of the increased pressure was induced by the action of weights on the wheat leaf. Extracellular electrodes were used for electrical signal measurements. Pulse-amplitude-modulation fluorescent imaging was used for measurements of the quantum yield of photosystem II and nonphotochemical quenching of chlorophyll fluorescence in wheat leaves. It was shown that the local action of pressure on wheat leaf induced electrical signals near the irritated zone: HESs were caused by low pressure (10 kPa) and depolarization signals were induced by high pressure (100 kPa). The local action of moderate pressure (50 kPa) induced weak electrical signals near the irritated zone; however, HESs were observed with increasing distance from this zone. It was also shown that the local action of this moderate pressure induced the photosynthetic inactivation (decreasing the quantum yield of photosystem II and increasing the nonphotochemical quenching of chlorophyll fluorescence) in the nonirritated parts of the wheat leaves. Thus, our results show that the local action of the increased pressure and, probably, subsequent propagation of the hydraulic wave induce electrical signals (including HESs) and photosynthetic inactivation in nonirritated parts of plants that are similar to ones caused by the local action of moderate stressors (e.g., moderate heating). This means that both HESs and depolarization electrical signals can have a hydraulic mechanism of propagation.

7.
Front Plant Sci ; 14: 1153731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089652

RESUMO

Local action of stressors induces fast changes in physiological processes in intact parts of plants including photosynthetic inactivation. This response is mediated by generation and propagation of depolarization electrical signals (action potentials and variation potentials) and participates in increasing plant tolerance to action of adverse factors. Earlier, we showed that a local action of physiological stimuli (moderate heating and blue light), which can be observed under environmental conditions, induces hyperpolarization electrical signals (system potentials) in wheat plants. It potentially means that these signals can play a key role in induction of fast physiological changes under the local action of environmental stressors. The current work was devoted to investigation of influence of hyperpolarization electrical signals induced by the local action of the moderate heating and blue light on parameters of photosynthetic light reactions. A quantum yield of photosystem II (ФPSII) and a non-photochemical quenching of chlorophyll fluorescence (NPQ) in wheat plants were investigated. It was shown that combination of the moderate heating (40°C) and blue light (540 µmol m-2s-1) decreased ФPSII and increased NPQ; these changes were observed in 3-5 cm from border of the irritated zone and dependent on intensity of actinic light. The moderate soil drought (7 days) increased magnitude of photosynthetic changes and shifted their localization which were observed on 5-7 cm from the irritated zone; in contrast, the strong soil drought (14 days) suppressed these changes. The local moderate heating decreased ФPSII and increased NPQ without action of the blue light; in contrast, the local blue light action without heating weakly influenced these parameters. It meant that just local heating was mechanism of induction of the photosynthetic changes. Finally, propagation of hyperpolarization electrical signals (system potentials) was necessary for decreasing ФPSII and increasing NPQ. Thus, our results show that hyperpolarization electrical signals induced by the local action of the moderate heating inactivates photosynthetic light reactions; this response is similar with photosynthetic changes induced by depolarization electrical signals. The soil drought and actinic light intensity can influence parameters of these photosynthetic changes.

8.
Plants (Basel) ; 12(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771527

RESUMO

Parameters of illumination including the spectra, intensity, and photoperiod play an important role in the cultivation of plants under greenhouse conditions, especially for vegetables such as lettuce. We previously showed that illumination by a combination of red, blue, and white LEDs with a high red light intensity, was optimal for lettuce cultivation; however, the effect of the photoperiod on lettuce cultivation was not investigated. In the current work, we investigated the influence of photoperiod on production (total biomass and dry weight) and parameters of photosynthesis, respiration rate, and relative chlorophyll content in lettuce plants. A 16 h (light):8 h (dark) illumination regime was used as the control. In this work, we investigated the effect of photoperiod on total biomass and dry weight production in lettuce plants as well as on photosynthesis, respiration rate and chlorophyll content. A lighting regime 16:8 h (light:dark) was used as control. A shorter photoperiod (8 h) decreased total biomass and dry weight in lettuce, and this effect was related to the suppression of the linear electron flow caused by the decreasing content of chlorophylls and, therefore, light absorption. A longer photoperiod (24 h) increased the total biomass and dry weight, nevertheless an increase in photosynthetic processes, light absorption by leaves and chlorophyll content was not recorded, nor were differences in respiration rate, thus indicating that changes in photosynthesis and respiration are not necessary conditions for stimulating plant production. A simple model to predict plant production was also developed to address the question of whether increasing the duration of illumination stimulates plant production without inducing changes in photosynthesis and respiration. Our results indicate that increasing the duration of illumination can stimulate dry weight accumulation and that this effect can also be induced using the equal total light integrals for day (i.e., this stimulation can be also caused by increasing the light period while decreasing light intensity). Increasing the duration of illumination is therefore an effective approach to stimulating lettuce production under artificial lighting.

9.
Plants (Basel) ; 11(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35631733

RESUMO

In environmental conditions, plants can be affected by the action of numerous abiotic stressors. These stressors can induce both damage of physiological processes and adaptive changes including signaling-based changes. Development of optical methods of revealing influence of stressors on plants is an important task for plant investigations. The photochemical reflectance index (PRI) based on plant reflectance at 531 nm (measuring wavelength) and 570 nm (reference wavelength) can be effective tool of revealing plant stress changes (mainly, photosynthetic changes); however, its efficiency is strongly varied at different conditions. Earlier, we proposed series of modified PRIs with moderate shifts of the measuring wavelength and showed that these indices can be effective for revealing photosynthetic changes under fluctuations in light intensity. The current work was devoted to the analysis of sensitivity of these modified PRIs to action of drought and short-term heat stress. Investigation of spatially-fixed leaves of pea plants showed that the modified PRI with the shorter measuring wavelength (515 nm) was increased under response of drought and heat; by contrast, the modified PRI with the longer wavelength (555 nm) was decreased under response to these stressors. Changes of investigated indices could be related to parameters of photosynthetic light reactions; however, these relations were stronger for the modified PRI with the 555 nm measuring wavelength. Investigation of canopy of pea (vegetation room) and wheat (vegetation room and open-ground) supported these results. Thus, moderate changes in the measuring wavelengths of PRI can strongly modify the efficiency of their use for the estimation of plant physiological changes (mainly photosynthetic changes) under action of stressors. It is probable that the modified PRI with the 555 nm measuring wavelength (or similar indices) can be an effective tool for revealing photosynthetic changes induced by stressors.

10.
Plants (Basel) ; 11(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214867

RESUMO

Local damage to plants can induce fast systemic physiological changes through generation and propagation of electrical signals. It is known that electrical signals influence numerous physiological processes including photosynthesis; an increased plant tolerance to actions of stressors is a result of these changes. It is probable that parameters of electrical signals and fast physiological changes induced by these signals can be modified by the long-term actions of stressors; however, this question has been little investigated. Our work was devoted to the investigation of the parameters of burning-induced electrical signals and their influence on photosynthesis under soil water shortage in pea seedlings. We showed that soil water shortage decreased the amplitudes of the burning-induced depolarization signals (variation potential) and the magnitudes of photosynthetic inactivation (decreasing photosynthetic CO2 assimilation and linear electron flow and increasing non-photochemical quenching of the chlorophyll fluorescence and cyclic electron flow around photosystem I) caused by these signals. Moreover, burning-induced hyperpolarization signals (maybe, system potentials) and increased photosynthetic CO2 assimilation could be observed under strong water shortage. It was shown that the electrical signal-induced increase of the leaf stomatal conductance was a potential mechanism for the burning-induced activation of photosynthetic CO2 assimilation under strong water shortage; this mechanism was not crucial for photosynthetic response under control conditions or weak water shortage. Thus, our results show that soil water shortage can strongly modify damage-induced electrical signals and fast physiological responses induced by these signals.

11.
Biology (Basel) ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35053058

RESUMO

LED illumination can have a narrow spectral band; its intensity and time regime are regulated within a wide range. These characteristics are the potential basis for the use of a combination of LEDs for plant cultivation because light is the energy source that is used by plants as well as the regulator of photosynthesis, and the regulator of other physiological processes (e.g., plant development), and can cause plant damage under certain stress conditions. As a result, analyzing the influence of light spectra on physiological and growth characteristics during cultivation of different plant species is an important problem. In the present work, we investigated the influence of two variants of LED illumination (red light at an increased intensity, the "red" variant, and blue light at an increased intensity, the "blue" variant) on the parameters of photosynthetic dark and light reactions, respiration rate, leaf reflectance indices, and biomass, among other factors in lettuce (Lactuca sativa L.). The same light intensity (about 180 µmol m-2s-1) was used in both variants. It was shown that the blue illumination variant increased the dark respiration rate (35-130%) and cyclic electron flow around photosystem I (18-26% at the maximal intensity of the actinic light) in comparison to the red variant; the effects were dependent on the duration of cultivation. In contrast, the blue variant decreased the rate of the photosynthetic linear electron flow (13-26%) and various plant growth parameters, such as final biomass (about 40%). Some reflectance indices (e.g., the Zarco-Tejada and Miller Index, an index that is related to the core sizes and light-harvesting complex of photosystem I), were also strongly dependent on the illumination variant. Thus, our results show that the red illumination variant contributes a great deal to lettuce growth; in contrast, the blue variant contributes to stress changes, including the activation of cyclic electron flow around photosystem I.

12.
Funct Plant Biol ; 49(2): 155-169, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34813421

RESUMO

Agricultural technologies aimed at increasing yields require the development of highly productive and stress-tolerant cultivars. Phenotyping can significantly accelerate breeding; however, no reliable markers have been identified to select the most promising cultivars at an early stage. In this work, we determined the light-induced dynamic of chlorophyll fluorescence (ChlF) parameters in young seedlings of 10 wheat (Triticum aestivum L.) cultivars and evaluated potency of these parameters as predictors of biomass accumulation and stress tolerance. Dry matter accumulation positively correlated with the effective quantum efficiency of photosystem II (Φ PSIIef ) and negatively correlated with the half-time of Φ PSIIef reaching (t 1/2 (Φ PSIIef )). There was a highly significant correlation between t 1/2 (Φ PSIIef ) and dry matter accumulation with increasing prediction period. Short-term heating and drought caused an inhibition of biomass accumulation and photosynthetic activity depending on the stressor intensity. The positive correlation between the Φ PSII dark level (Φ PSIId ) in young seedlings and tolerance to a rapidly increasing short-term stressor (heating) was shown. In the case of a long-term stressor (drought), we revealed a strong negative relationship between tolerance and the level of non-photochemical fluorescence quenching (NPQ). In general, the results show the potency of the ChlF parameters of young seedlings as predictors of biomass accumulation and stress tolerance.


Assuntos
Secas , Triticum , Biomassa , Clorofila/farmacologia , Fluorescência , Temperatura Alta , Melhoramento Vegetal
13.
Plants (Basel) ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34686016

RESUMO

Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat.

14.
Plants (Basel) ; 10(5)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925343

RESUMO

Local damage (e.g., burning) induces a variation potential (VP), which is an important electrical signal in higher plants. A VP propagates into undamaged parts of the plant and influences numerous physiological processes, including photosynthesis. Rapidly increasing plant tolerance to stressors is likely to be a result of the physiological changes. Thus, developing methods of revealing VP-induced physiological changes can be used for the remote sensing of plant systemic responses to local damage. Previously, we showed that burning-induced VP influenced a photochemical reflectance index in pea leaves, but the influence of the electrical signals on other reflectance indices was not investigated. In this study, we performed a complex analysis of the influence of VP induction by local burning on difference reflectance indices based on 400-700 nm wavelengths in leaves of pea seedlings. Heat maps of the significance of local burning-induced changes in the reflectance indices and their correlations with photosynthetic parameters were constructed. Large spectral regions with significant changes in these indices after VP induction were revealed. Most changes were strongly correlated to photosynthetic parameters. Some indices, which can be potentially effective for revealing local burning-induced photosynthetic changes, are separately shown. Our results show that difference reflectance indices based on 400-700 nm wavelengths can potentially be used for the remote sensing of plant systemic responses induced by local damages and subsequent propagation of VPs.

15.
Plant Signal Behav ; 16(4): 1869415, 2021 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404323

RESUMO

Electrical signals in plants caused by external stimuli are capable of inducing various physiological responses. The mechanisms of transformation of a long-distance electrical signal (ES) into a functional response remain largely unexplored and require additional research. In this work, we investigated the role of calcium ions in the development of ES-induced respiratory response. Gradual heating of the leaf causes the propagation of variation potential (VP) in the pea seedling. The propagation of VP leads to a transient activation of respiration in an unaffected leaf. During the VP generation, a transient increase in the intracellular calcium concentration takes place. A calcium channel blocker inhibits the respiratory response, and a calcium ionophore induces the activation of respiration. Inhibitory analysis has showed that the VP-induced increase in respiration activity is probably associated with calcium-mediated activation of rotenone-insensitive alternative NADPH dehydrogenases in mitochondria.


Assuntos
Cálcio/metabolismo , Pisum sativum/metabolismo , Plântula/metabolismo , Calcimicina/farmacologia , Respiração Celular , Fenômenos Eletrofisiológicos , Espaço Intracelular/metabolismo , Íons , Modelos Biológicos , NADPH Desidrogenase/metabolismo
16.
Plants (Basel) ; 9(11)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207655

RESUMO

Local damage (e.g., burning, heating, or crushing) causes the generation and propagation of a variation potential (VP), which is a unique electrical signal in higher plants. A VP influences numerous physiological processes, with photosynthesis and respiration being important targets. VP generation is based on transient inactivation of H+-ATPase in plasma membrane. In this work, we investigated the participation of this inactivation in the development of VP-induced photosynthetic and respiratory responses. Two- to three-week-old pea seedlings (Pisum sativum L.) and their protoplasts were investigated. Photosynthesis and respiration in intact seedlings were measured using a GFS-3000 gas analyzer, Dual-PAM-100 Pulse-Amplitude-Modulation (PAM)-fluorometer, and a Dual-PAM gas-exchange Cuvette 3010-Dual. Electrical activity was measured using extracellular electrodes. The parameters of photosynthetic light reactions in protoplasts were measured using the Dual-PAM-100; photosynthesis- and respiration-related changes in O2 exchange rate were measured using an Oxygraph Plus System. We found that preliminary changes in the activity of H+-ATPase in the plasma membrane (its inactivation by sodium orthovanadate or activation by fusicoccin) influenced the amplitudes and magnitudes of VP-induced photosynthetic and respiratory responses in intact seedlings. Decreases in H+-ATPase activity (sodium orthovanadate treatment) induced fast decreases in photosynthetic activity and increases in respiration in protoplasts. Thus, our results support the effect of H+-ATPase inactivation on VP-induced photosynthetic and respiratory responses.

17.
Biology (Basel) ; 9(10)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020382

RESUMO

Abscisic acid (ABA) is an important hormone in plants that participates in their acclimation to the action of stressors. Treatment by exogenous ABA and its synthetic analogs are a potential way of controlling the tolerance of agricultural plants; however, the mechanisms of influence of the ABA treatment on photosynthetic processes require further investigations. The aim of our work was to investigate the participation of inactivation of the plasma membrane H+-ATP-ase on the influence of ABA treatment on photosynthetic processes and their regulation by electrical signals in peas. The ABA treatment of seedlings was performed by spraying them with aqueous solutions (10-5 M). The combination of a Dual-PAM-100 PAM fluorometer and GFS-3000 infrared gas analyzer was used for photosynthetic measurements; the patch clamp system on the basis of a SliceScope Pro 2000 microscope was used for measurements of electrical activity. It was shown that the ABA treatment stimulated the cyclic electron flow around photosystem I and decreased the photosynthetic CO2 assimilation, the amplitude of burning-induced electrical signals (variation potentials), and the magnitude of photosynthetic responses relating to these signals; in contrast, treatment with exogenous ABA increased the heat tolerance of photosynthesis. An investigation of the influence of ABA treatment on the metabolic component of the resting potential showed that this treatment decreased the activity of the H+-ATP-ase in the plasma membrane. Inhibitor analysis using sodium orthovanadate demonstrated that this decrease may be a mechanism of the ABA treatment-induced changes in photosynthetic processes, their heat tolerance, and regulation by electrical signals.

18.
Plant Signal Behav ; 15(4): 1737786, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32149565

RESUMO

Electrical signals (ESs) can be induced by local action of stressors in plants; they influence numerous physiological processes (photosynthesis, transpiration, respiration, genes expression, synthesis of phytohormones, etc.) and, thereby, induce a systemic adaptation response. Development of optical methods of a remote sensing of this response can be important for agricultural and ecological monitoring. Preliminarily, we showed (Sukhova et al., Plant Sign Behav 2019; 14:e1610301) that burning-induced ESs induced changes in leaf reflectance at broad spectral bands (400-500, 500-600, 600-700, and 700-800 nm). The aims of the present work were (i) investigation of ESs influence on difference reflectance indices (RIs) calculated on the basis of these broad spectral bands and (ii) analysis of connection of the indices with water content in plants. Pea seedlings were investigated. ESs were induced by burning of the first mature leaf; ESs had high amplitudes in the second leaf and had low amplitudes in the fourth leaf. It was shown that ESs induced significant changes in RIs, which were calculated on basis of intensities of the reflected light at (i) 400-500 and 600-700 nm, (ii) 500-600 and 700-800 nm, and (iii) 600-700 and 700-800 nm. The effect was strong in the second leaf and weak in the fourth leaf; that is, the response was dependent on the magnitude of ESs. ESs-induced changes in RI were strongly connected with ESs-induced decrease of leaf water content which was estimated on basis of decrease of water index. Thus, broadband RIs can be used for revealing the ESs-induced systemic stress response in plants.


Assuntos
Fenômenos Eletrofisiológicos , Incêndios , Fenômenos Ópticos , Pisum sativum/fisiologia , Folhas de Planta/fisiologia , Água/metabolismo , Fotossíntese
19.
Photosynth Res ; 146(1-3): 175-187, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32043219

RESUMO

The remote sensing of a plant's physiological state is a key problem of precision agriculture. The photochemical reflectance index (PRI), which is based on the intensities of the reflected light at 531 and 570 nm, is an important tool for the remote sensing of photosynthetic processes in plants. In particular, the PRI can be strongly connected with the non-photochemical quenching of chlorophyll fluorescence (NPQ) and the quantum yield of photosystem II (ФPSII); however, this connection is dependent on illumination, the intensity of stressor actions, the time scale of measurements, etc. The aim of the present work was to analyze the connection of PRI with the energy-dependent component of NPQ (NPQF) and ФPSII under heating and soil drought conditions. Pea, wheat, and pumpkin seedlings, which were grown under controlled conditions, were investigated. A PAM fluorometer Dual-PAM-100 and spectrometer S-100 were used for measurements of photosynthetic parameters and PRI, respectively. It was shown that heat stress increased the NPQF and the magnitude of light-induced changes in PRI (ΔPRI) and decreased ФPSII in pea seedlings. The decreased ФPSII and increased ΔPRI were observed in wheat after heating, but significant changes in NPQF were absent; the significant decrease in ФPSII was observed in pumpkin seedlings, while there were no significant changes in the other parameters. ΔPRI and NPQF after heating were significantly correlated. However, a significant correlation of the absolute values of PRI with photosynthetic parameters was absent. The soil drought increased NPQF and the magnitude of ΔPRI and decreased ФPSII in peas. ΔPRI was strongly correlated with photosynthetic parameters, but this correlation was absent for the absolute value of PRI. Thus, ΔPRI is strongly connected with the magnitude of NPQF and can be used as an estimator of this parameter.


Assuntos
Cucurbita/fisiologia , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Pisum sativum/fisiologia , Triticum/fisiologia , Secas , Resposta ao Choque Térmico , Solo/química
20.
Plant Signal Behav ; 14(7): 1610301, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31025577

RESUMO

Local action of stressors induces generation and propagation of electrical signals (ESs), which influence numerous physiological processes (including photosynthesis, expression of genes, production of phytohormones, etc.) in undamaged parts of plants; i.e. they induce a systemic stress response. Development of methods of remote sensing of this response (in particular, optical methods) is an important practical task for agricultural and ecological monitoring. However, this problem is not sufficiently researched. Earlier, we reported that ESs influence the photochemical reflectance index, which can be calculated on the basis of reflected light at 531 and 570 nm, and these changes are connected with photosynthetic changes. The aim of the current work is investigation of the influence of ESs on reflectance at broad spectral bands (400-500 nm, 500-600 nm, 600-700 nm and 700-800 nm). We showed that burning-induced ESs caused transient increase of intensity of reflected light at the all investigated spectral bands of visible light: reflectance at 600-700 nm had the maximal magnitude of changes and reflectance at 700-800 nm had the minimal magnitude of changes. Dynamics of the reflectance changes were distinguished from dynamics of photosynthetic changes, induced by ESs; i.e. ESs-induced changes in reflectance seem to be weakly connected with the photosynthetic response. Thus, our results show that changes in reflectance at broad spectral bands can also be used for remote sensing of the ESs-induced systemic stress response in plants.


Assuntos
Eletricidade , Luz , Pisum sativum/fisiologia , Pisum sativum/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Complexo de Proteína do Fotossistema II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...