Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytochemistry ; 213: 113750, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37279870

RESUMO

Biotransformation of toxic components by plant endophytes has become an effective method to reduce the toxicity of target compounds and discover lead compounds. In this context, an endophytic fungus, Pestalotiopsis sp. LGT-1, from Tripterygium wilfordii Hook F. (TwHF), was used to reduce the toxicity of celastrol which is also produced by TwHF and is considered an attractive molecule with a variety of biological activities. Seven celastrol derivatives (1-7) were isolated from the coculture fermentation broth of LGT-1 and celastrol. Their structures were elucidated by spectroscopic data analysis including 1D and 2D NMR, as well as HRESIMS. Their absolute configurations were determined by analysis of NOESY, ECD data and NMR calculations. In cell proliferation experiments, the toxicity of seven compounds was 10.11- to 1.24-fold lower in normal cells than the prototype compound celastrol. These derivatives serve as potential candidates for future pharmaceutical applications.


Assuntos
Pestalotiopsis , Tripterygium , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Biotransformação
2.
Front Microbiol ; 13: 810565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694316

RESUMO

Celastrol (1), obtained from the roots of Tripterygium wilfordii Hook F., is most likely to become an antitumor drug, but with severe cytotoxicity. Due to the lack of modifiable sites in the structure of celastrol, the structural diversity of the modified products obtained by synthesis in the previous studies is insufficient, which hinders the pace of its patent medicine. This study describes a method of microbial transformation to increase the modification site of celastrol and reduce its toxicity. The screening of endophytes from native plants was introduced in this context, which led to two novel stereoselective oxidation products such as S-16-hydroxyl celastrol (2) and A-ring aromatized S-16-hydroxyl celastrol (3), along with a rare 7,9-octadecadienoic acid ester of celastrol (4). Their structures were determined by extensive spectroscopic data analysis, especially 1D and 2D NMR. Compared with 1, compounds 3 and 4 exhibited similar antitumor activity in U251, A549, KG-1, and B16 cell lines. Compound 2 had slightly decreased antitumor activity when compared with compound 1. Furthermore, compound 2-4 showed lower cytotoxicity against BV-2 (about 21-fold lower, 2: 92.82 µM, 3: 34.25 µM, and 4: 74.75 µM vs. celastrol: 4.35 µM), and also identical trends against H9c2 and PC12 cell lines.

3.
J Ethnopharmacol ; 260: 112989, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32526339

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Lei-gong-gen formula granule (LFG) is a folk prescription derived from Zhuang nationality, the largest ethnic minority among the 56 nationalities in China. It is composed of three herbs, namely Centella asiatica (L.) Urb., Eclipta prostrata (L.) L., Smilax glabra Roxb. It has been widely used as health protection tea for many years to prevent cardiovascular and cerebrovascular diseases such as hyperlipidemia and hypertension. AIM OF THE STUDY: This study validated the lipid-lowering effect of LFG in a hyperlipidemia rat model. Then we employed network pharmacology and molecular biological approach to identify the active ingredients of LFG, corresponding targets, and its anti-hyperlipidemia mechanisms. MATERIALS AND METHODS: Hyperlipidemia rat model was established by feeding male Sprague-Dawley rats with high-fat diet for two weeks. LFG (two doses of 10 and 20 g/kg) was administered orally to hyperlipidemia rat model for 4 weeks, twice per day. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) were monitored in rats pre and post-treatment. Hematoxylin-eosin staining was applied to observe the pathology and lipid accumulation of liver. We then performed network pharmacology analysis to predict the ingredients, their associated targets, and hyperlipidemia associated targets. Pathway analysis with significant genes was carried out using KEGG pathway. These genes and proteins intersectioned between compound targets and hyperlipidemia targets were further verified with samples from hyperlipidemia rats treated with LFG using Real-time RT-PCR and Western Blot. RESULTS: LFG attenuated hyperlipidemia in rat model, and this was characterized with decreased serum levels of TC, LDL-C, liver wet weight, and liver index. LFG alleviated the hepatic steatosis in hyperlipidemia rats. Network pharmacology analysis identified 53 bioactive ingredients from LFG formula (three herbs), which link to 765 potential targets. 53 hyperlipidemia associated genes were retrieved from public databases. There were 10 common genes between ingredients-targets and hyperlipidemia associated genes, which linked to 20 bioactive ingredients. Among these 10 genes, 3 of them were validated to be involved in LFG's anti-hyperlipidemia effect using Real-time RT-PCR, namely ADRB2 encoding beta-2 adrenergic receptor, NOS3 encoding nitric oxide synthase 3, LDLR encoding low-density lipoprotein receptor. The cGMP-PKG signaling pathway was enriched for hyperlipidemia after pharmacology network analysis with ADRB2, NOS3, and LDLR. Interestingly, expression of cGMP-dependent protein kinase (PKG) was downregulated in hyperlipidemia rat after LFG treatment. Molecular docking study further supported that ferulic acid, histidine, p-hydroxybenzoic acid, and linalool were potential active ingredients for LFG's anti-hyperlipidemia effect. LC-MS/MS analysis confirmed that ferulic acid and p-hydroxybenzoic acid were active ingredients of LFG. CONCLUSION: LFG exhibited the lipid-lowering effect, which might be attributed to downregulating ADRB2 and NOS3, and upregulating LDLR through the cGMP-PKG signaling pathway in hyperlipidemia rat. Ferulic acid and p-hydroxybenzoic acid might be the underlying active ingredients which affect the potential targets for their anti-hyperlipidemia effect.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Hiperlipidemias/tratamento farmacológico , Animais , Centella/química , Cromatografia Líquida , Dieta Hiperlipídica , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/química , Eclipta/química , Hipolipemiantes/administração & dosagem , Hipolipemiantes/química , Hipolipemiantes/farmacologia , Lipídeos/sangue , Masculino , Simulação de Acoplamento Molecular , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Smilax/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...