Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 12(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36135901

RESUMO

In-depth exploration of filtration behavior and fouling characteristics of polymeric ultrafiltration (UF) membranes can provide guidance for the selection of materials and the control of membrane fouling during the purification of digestate. In this study, four types of polymeric membranes, (polyethersulfone (PES), polysulfone (PS), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN)), were employed to filter digestate from swine manure. The results showed that the viscosity of the digestate dropped from 45.0 ± 11.3 mPa·s to 18.0 ± 9.8 mPa·s, with an increase in temperature from 30.0 °C to 45.0 °C. The four membrane fluxes all increased by more than 30%, with the cross flow velocity increasing from 1.0 m s−1 to 2.0 m s−1. During the batch experiments, the flux maintenance abilities of the membranes were in the order: PAN > PS > PVDF > PES. There were no significant differences in the effects of membrane materials on the removal of COD, TN, and TP (p < 0.05). For UV254 removal efficiency, PS showed the highest efficiency (68.6%), while PVDF showed the lowest efficiency (63.4%). The major fouling type was irreversible hydraulic fouling, and the main elements of scaling were C, O, S, and Ca. Pseudomonadales were the dominant bacteria in the PS (26.2%) and in the PVDF (51.4%) fouling layers, while Bacteroidales were the dominant bacteria in the PES (26.8%) and in the PAN (14.7%) fouling layers. The flux recovery rates (FRRs) of the cleaning methods can be arranged as follows: NaClO > NaOH > Citric acid ≈ Tap water. After NaClO cleaning, the PVDF membrance showed the highest FRR (73.1%), and the PAN membrane showed the lowest FRR (30.1%).

2.
Membranes (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802519

RESUMO

Ultrafiltration (UF) can effectively remove large particles, suspended solids, and colloidal substances from anaerobic digestate. However, membrane fouling is a technical challenge in the purification of the digestate by UF. In this study, polyethersulfone (PES) membranes with four pore sizes (50.0, 20.0, 10.0 and 5.0 kDa) were employed to filter anaerobic digestate from swine manure. The effects of temperature, transmembrane pressure (TMP), and cross-flow velocity (CFV) on flux were investigated. The purification effects and fouling characteristics of the four membranes were analyzed. The results revealed that the increase of temperature and CFV can effectively promote UF separation efficiency, but as the TMP exceeded 3.0 bar, the flux increase rates of the four membranes were almost zero. The larger membrane pore size caused the faster flux increase with the increase in pressure. During the batch experiment, the 20.0 kDa membrane showed the lowest flux maintenance ability, while the 5.0 kDa showed the highest ability due to the smaller pore size. All four membranes can effectively remove tetracyclines residues. Elements C, O, and S were the major membrane foulant elements. The dominant bacteria orders of membrane fouling were Pseudomonadales, Xanthomonadales and Burkholderiales. Compared with tap water and citric acid, the membrane cleaning by NaOH and NaClO showed higher flux recovery rates. The 50.0 kDa membrane achieved the best cleaning effects under all cleaning methods.

3.
Membranes (Basel) ; 10(10)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977376

RESUMO

Nanofiltration (NF) or reverse osmosis (RO) process has been widely applied for concentrating nutrient in biogas digestate. However, efficient pretreatment is key to the sustainable operation of NF or RO. In this study, the combination of NF and RO for concentrating biogas digestate was compared using different pretreatments of hollow fiber ultrafiltration membrane (HFUFM) and ceramic membrane (CUFM). Pilot-scale batch tests were conducted (500 L). CUFM showed a higher membrane flux than HFUFM (100 ~ 180 L·(m2·h)-1 vs. 17 ~ 35 L·(m2·h)-1), but they showed little impact on the NF + RO process. Membrane fluxes of NF and RO were 20 ~ 48 L·(m2·h)-1 and 16 ~ 40 L·(m2·h)-1, respectively. In the RO permeates, the removal rates of total suspended solids (TSS), total solids (TS), chemical oxygen demand (COD), total nitrogen (TN), NH4+-N, and Cl- were above 91%. In the concentrates, TN and total potassium (TK) were concentrated by 1.60 and 2.00 folds in the NF stage, and by 2.10 and 2.30 folds in the RO stage. Further attention should be paid to the antibiotics risks in the concentrates before they are utilized as plant fertilizers.

4.
Artigo em Inglês | MEDLINE | ID: mdl-30200357

RESUMO

The membrane process had been applied for the advanced treatment of pig farm biogas slurry. As studied, this physical pretreatment, with low cost and high efficiency of the suspended solids removal and nutrient retention, is required to control membrane fouling. The combined process of paper filtration and ultrafiltration in a pilot scale was applied in the present study. The main objective was to explore and identify the feasibility of the new process for the pretreatment of the separation liquid of pig farm biogas slurry. A precision identification experiment of paper filtration and the multi-batch repetitive experiments of the combined process were designed. The results showed, at the identified paper filtration precision of 50µm and an operating pressure of 0.3 bar of the ultrafiltration process, that the flux rate at the stable stage of the multi-batch operation was around 295.00 L/h. The combined process achieved an overall processing rate of 345.41 ± 18.81 L/h and a volume permeation proportion of 82.45% ± 0.85%. The TSS was removed by 95.71%, but total nitrogen (TN) and ammonia nitrogen (NH3-N) were retained by 76.29% ± 2.04% and 73.74% ± 2.10%, respectively. Comprehensively, the requirement for the pretreatment was obtained.


Assuntos
Biocombustíveis , Esterco , Eliminação de Resíduos Líquidos/métodos , Amônia/análise , Animais , Fazendas , Filtração , Nitrogênio/análise , Papel , Suínos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...