Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(7): 7609-7620, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405546

RESUMO

The process of reconstructing an arterial graft is a complex and dynamic process that is subject to the influence of various mechanical factors, including tissue regeneration and blood pressure. The attainment of favorable remodeling outcomes is contingent upon the biocompatibility and biomechanical properties of the arterial graft. A promising strategy involves the emulation of the three-layer structure of the native artery, wherein the inner layer is composed of polycaprolactone (PCL) fibers aligned with blood flow, exhibiting excellent biocompatibility that fosters endothelial cell growth and effectively prevents platelet adhesion. The middle layer, consisting of PCL and polyurethane (PU), offers mechanical support and stability by forming a contractile smooth muscle ring and antiexpansion PU network. The outer layer, composed of PCL fibers with an irregular arrangement, promotes the growth of nerves and pericytes for long-term vascular function. Prioritizing the reconstruction of the inner and outer layers establishes a stable environment for intermediate smooth muscle growth. Our three-layer arterial graft is designed to provide the blood vessel with mechanical support and stability through nondegradable PU, while the incorporation of degradable PCL generates potential spaces for tissue ingrowth, thereby transforming our graft into a living implant.

2.
Small ; 19(11): e2207918, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36670062

RESUMO

It is highly desired but challenging to design high performance catalyst for selective hydrogenation of nitro compounds into amino compounds. Herein, a boosting chemoselective hydrogenation strategy on Pt@Fe2 O3 is proposed with gradient oxygen vacancy by synergy of hydrogen spillover and preferential adsorption. Experimental and theoretical investigations reveal that the nitro is preferentially adsorbed onto oxygen vacancy of Pt@Fe2 O3 , meanwhile, the H2 dissociated on Pt nanoparticles and then spillover to approach the nitro for selective hydrogenation (>99% conversion of 4-nitrostyrene, > 99% selectivity of 4-aminostyrene, TOF of 2351 h-1 ). Moreover, the iron oxide support endows the catalyst magnetic retrievability. This high activity, selectivity, and easy recovery strategy provide a promising avenue for selective hydrogenation catalysis of various nitroaromatic.

3.
Nat Commun ; 13(1): 2731, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585058

RESUMO

Biologically derived and biologically inspired fibers with outstanding mechanical properties have found attractive technical applications across diverse fields. Despite recent advances, few fibers can simultaneously possess high-extensibility and self-recovery properties especially under wet conditions. Here, we report protein-based fibers made from recombinant scallop byssal proteins with outstanding extensibility and self-recovery properties. We initially investigated the mechanical properties of the native byssal thread taken from scallop Chlamys farreri and reveal its high extensibility (327 ± 32%) that outperforms most natural biological fibers. Combining transcriptome and proteomics, we select the most abundant scallop byssal protein type 5-2 (Sbp5-2) in the thread region, and produce a recombinant protein consisting of 7 tandem repeat motifs (rTRM7) of the Sbp5-2 protein. Applying an organic solvent-enabled drawing process, we produce bio-inspired extensible rTRM7 fiber with high-extensibility (234 ± 35%) and self-recovery capability in wet condition, recapitulating the hierarchical structure and mechanical properties of the native scallop byssal thread. We further show that the mechanical properties of rTRM7 fiber are highly regulated by hydrogen bonding and intermolecular crosslinking formed through disulfide bond and metal-carboxyl coordination. With its outstanding mechanical properties, rTRM7 fiber can also be seamlessly integrated with graphene to create motion sensors and electrophysiological signal transmission electrode.


Assuntos
Pectinidae , Proteínas , Animais , Proteínas/química , Proteômica , Alimentos Marinhos , Software
4.
RSC Adv ; 12(17): 10258-10266, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35425007

RESUMO

TiO2/g-C3N4 composite photocatalysts with various merits, including low-cost, non-toxic, and environment friendliness, have potential application for producing clean energy and removing organic pollutants to deal with the global energy shortage and environmental contamination. Coating a continuous g-C3N4 layer on TiO2 fibers to form a core/shell structure that could improve the separation and transit efficiency of photo-induced carriers in photocatalytic reactions is still a challenge. In this work, porous TiO2 (P-TiO2)@g-C3N4 fibers were prepared by a hard template-assisted electrospinning method together with the g-C3N4 precursor in an immersing and calcination process. The continuous g-C3N4 layer was fully packed around the P-TiO2 fibers tightly to form a TiO2@g-C3N4 core/shell composite with a strong TiO2/g-C3N4 heterojunction, which greatly enhanced the separation efficiency of photo-induced electrons and holes. Moreover, the great length-diameter ratio configuration of the fiber catalyst was favorable for the recycling of the catalyst. The P-TiO2@g-C3N4 core/shell composite exhibited a significantly enhanced photocatalytic performance both in H2 generation and dye degradation reactions under visible light irradiation, owing to the specific P-TiO2@g-C3N4 core/shell structure and the high-quality TiO2/g-C3N4 heterojunction in the photocatalyst. This work offers a promising strategy to produce photocatalysts with high efficiency in visible light through a rational structure design.

5.
Macromol Rapid Commun ; 41(10): e2000089, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32270558

RESUMO

Oil or chemical purification is significant not only for industrial safety production but also because it conforms to the principle of sustainable development. In this paper, based on the synergistic concept of superwettability and nanopores sieve effect, a superoleophilic and under-oil superhydrophobic carbon nanotube/poly(vinylidene fluoride-co-hexafluoropropylene) nanofiber composite membrane is prepared via electrospinning, pressure-driven filtration, and chemical vapor modification. The as-prepared membrane with durable mechanical and chemical stabilities achieves separation efficiency higher than 99.9% and high flux up to 632.5 L m-2 h-1 bar-1 for different water-in-oil emulsions. This membrane is highly promising for the petroleum and chemical industries for both product quality improvement and green recycling manufacturing processes.


Assuntos
Fluorocarbonos/química , Nanofibras/química , Nanotubos de Carbono/química , Polivinil/química , Emulsões/química , Emulsões/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície , Molhabilidade
6.
Angew Chem Int Ed Engl ; 59(6): 2465-2472, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31788929

RESUMO

Multi-wall Sn/SnO2 @carbon hollow nanofibers evolved from SnO2 nanofibers are designed and programable synthesized by electrospinning, polypyrrole coating, and annealing reduction. The synthesized hollow nanofibers have a special wire-in-double-wall-tube structure with larger specific surface area and abundant inner spaces, which can provide effective contacting area of electrolyte with electrode materials and more active sites for redox reaction. It shows excellent cycling stability by virtue of effectively alleviating pulverization of tin-based electrode materials caused by volume expansion. Even after 2000 cycles, the wire-in-double-wall-tube Sn/SnO2 @carbon nanofibers exhibit a high specific capacity of 986.3 mAh g-1 (1 A g-1 ) and still maintains 508.2 mAh g-1 at high current density of 5 A g-1 . This outstanding electrochemical performance suggests the multi-wall Sn/SnO2 @ carbon hollow nanofibers are great promising for high performance energy storage systems.

7.
Langmuir ; 35(14): 4843-4848, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30860391

RESUMO

One-dimensional (1D) hollow nanomaterials were widely used in the catalysis field. However, the inner surfaces of 1D hollow nanostructures could not be effectively utilized in liquid reaction because of diffusional limitation caused by the large ratio of length to diameter. In this work, a template-assisted coaxial electrospinning method was developed to prepare TiO2 hollow nanofibers with through-holes which were further employed as a carrier for Au nanoparticles. The Au/TiO2 hollow nanofibers with through-holes showed significant catalytic activity enhancement to the reduction of 4-nitrophenol in aqueous solution compared with solid and hollow nanofiber counterparts. The through-holes which provided unrestricted macropores for mass transfer in liquid solution were studied to be accounted for the catalytic activity enhancement. The through-hole structures can widen the application ranges and increase the efficiencies of zero-dimensional or 1D hollow nanomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...