Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(1): 1064-1078, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030842

RESUMO

Genes nirS, nirK, and nosZ are specific for the denitrification process, which is associated with greenhouse gas N2O emission. The abundances and diversities of community containing these three genes are usually used as a common index to reflect the denitrification process, and they would be affected by differences in environmental factors caused by changes from warm to cold conditions. The quantification of denitrification in natural wetlands is complex, and straightforward identification of spatial distribution and drivers affecting the process is still developing. In this study, the bacterial communities, gene diversities, and relative abundances involved in denitrification were investigated in Liaohe Estuary Wetland. We analyzed the relative abundances, diversities, and communities of bacteria containing the three genes at warm and cold conditions using Illumina MiSeq sequencing and detected the potential environmental factors influencing their distribution by using a random forest algorithm. There are great differences in the community composition of the bacteria containing genes nirS, nirK, and nosZ. All the abundant taxa of nirS and nirK communities belonged to phylum Proteobacteria. Compared with the community composition of bacteria containing nirS and nirK, the community of bacteria containing nosZ is more diverse, and the subdivision taxa of phylum Euryarchaeota was also abundant in the community containing nosZ. The distribution characteristics of the relative abundance of nirS and nirK showed obvious differences both at warm and cold climate conditions. The oxidation-reduction potential, nitrite nitrogen, and salinity were detected as potential variables that might explain the diversity of nirS. The total nitrogen and nitrite nitrogen were the important variables for predicting the relative abundance of nirS at warm climate condition, while oxidation-reduction potential and pH contributed to the diversity of nirS at cold condition. The bulk density of sediment was detected as a potential variable affecting the relative abundance of nirK at warm and cold conditions, and diversity of nirK at warm condition, while nitrite nitrogen was detected as an important environmental factor for predicting the diversity of nirK at cold condition. Overall, our results show that the key environmental factors, which affect the relative abundance, diversity, and community of bacteria containing the functional denitrification genes, are not exactly the same, and the diversities of nirS, nirK, and nosZ have a higher environmental sensitivity than their relative abundances.


Assuntos
Nitritos , Áreas Alagadas , Desnitrificação , Estuários , Bactérias/genética , Nitrogênio , Microbiologia do Solo
2.
Biomed Opt Express ; 12(11): 7113-7121, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858703

RESUMO

There is a growing interest to use live cells to replace the widely used non-biological microsphere lenses. In this work, we demonstrate the use of yeast cells for such imaging purpose. Using fiber-based optical trapping technique, we trap a chain of three yeast cells and bring them to the vicinity of imaging objects. These yeast cells work as near-field magnifying lenses and simultaneously pick up the sub-diffraction information of the nanoscale objects under each cell and project them into the far-field. The experimental results demonstrated that Blu-ray disc of 100 nm feature can be clearly resolved in a parallel manner by each cell.

3.
Materials (Basel) ; 14(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572438

RESUMO

CNT-AlSi10Mg composites fabricated by SLM have drawn a lot attention in structural application due to its excellent strength, elasticity and thermal conductivities. A planetary ball milling method was used to prepare the carbon nanotube (CNT)-AlSi10Mg powders, and the CNT-AlSi10Mg composites were fabricated by selective laser melting (SLM). The density, microstructure and mechanical properties of CNT-AlSi10Mg composites were studied. The density of the test samples increased at first and then decreased with increasing scan speed. When the laser scan speed was 800 mm/s, the test sample exhibited the highest density. The hardness increased by approximately 26%, and the tensile strength increased by approximately 13% compared to those values exhibited by the unreinforced AlSi10Mg. The grains of CNT-AlSi10Mg composite are finer than that in the AlSi10Mg. The CNTs were distributed along the grain boundaries of AlSi10Mg. Some of the CNTs reacted with Al element and transformed into Al4C3 during SLM, while some of the CNTs still maintained their tubular structure. The combination of CNTs and Al4C3 has a significant improvement in mechanical properties of the composites through fine grain strengthening, second phase strengthening, and load transfer strengthening.

4.
Nanoscale Adv ; 3(16): 4659-4668, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36134301

RESUMO

Anodic TiO2 nanotubes have been studied widely for two decades because of their regular tubular structures and extensive applications. However, the formation mechanism of anodic TiO2 nanotubes remains unclear, because it is difficult to find convincing evidence for popular field-assisted dissolution or field-assisted injection theories and the oxygen bubble model. Here, in a bid to find direct evidence that oxygen bubbles form nanotube embryos, a new method is applied to handle this challenge. Before nanotube formation, a dense cover layer was formed to make nanotubes grow more slowly. Many completely enclosed nanotube embryos formed by oxygen bubbles were found beneath the dense cover layer for the first time. The formation of these enclosed and hollow gourd-shaped embryos is convincing enough to prove that the nanotubes are formed by the oxygen bubble mold, similar to inflating a football, rather than by field-assisted dissolution. Based on the 'oxygen bubble model' and ionic current and electronic current theories, the formation and growth process of nanotube embryos is explained clearly for the first time. These interesting findings indicate that the 'oxygen bubble model' and ionic current and electronic current theories also apply to anodization of other metals.

5.
Appl Opt ; 60(34): 10736-10742, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35200940

RESUMO

The self-mixing interference (SMI) signal carries the information of the external moving object, which has great physical significance and application prospects for extracting and analyzing the information of the external object. In this paper, we propose a vibration measurement method based on a reverse point recognition algorithm on the SMI laser signal. By extracting and analyzing the hill and valley values of the SMI signal to determine the reverse point, combined with the semifringe counting method, the vibration information of external objects can be accurately extracted. The method we propose simplifies the displacement reconstruction process with high accuracy. The simulation and experimental results show that this method can achieve high-precision measurements of microvibration with an absolute error of less than 19 nm.

6.
Scanning ; 2020: 4831798, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774587

RESUMO

In this paper, AISI 316L stainless steel part is obtained by laser metal deposition additive manufacturing method. The microstructure of the part was observed and analyzed by an optical microscope. The tensile mechanical properties and residual stress distribution of the part were tested by tensile test and the contour method. The results show that the bulk structure is mainly columnar crystal and equiaxed crystal, and the latter layer of laser metal deposition will form a remelted zone and heat-affected zone in the former deposition zone. Tensile test results show that the tensile strength of tensile specimens parallel to laser scanning direction and perpendicular to laser scanning direction is basically the same, but the elongation of the specimens perpendicular to the laser scanning direction is relatively better. The main reason is the different distribution characteristics of columnar crystals and equiaxed crystals in the two directions. Relatively large deformation occurs on the cut surface of the specimen after low-speed wire cut. The residual stress test results indicate that tensile stress is formed in the upper part and it reaches 315 MPa at the top surface. And compressive stress is formed at the part/substrate interface and the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...