Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667858

RESUMO

Vibration signal analysis is an important means for bearing fault diagnosis. Affected by the vibration of other machine parts, external noise and the vibration transmission path, the impulses induced by a bearing defect in the measured vibrations are very weak. Blind deconvolution (BD) methods can counteract the effect of the transmission path and enhance the fault impulses. Most BD methods highlight fault features of the filtered signals by impulse-featured objective functions (OFs). However, residual noise in the filtered signals has not been well tackled. To overcome this problem, a fuzzy entropy-assisted deconvolution (FEAD) method is proposed. First, FEAD takes advantage of the high noise sensitivity of fuzzy entropy (FuzzyEn) and constructs a weighted FuzzyEn-kurtosis OF to enhance the fault impulses while suppressing noise interference. Then, the PSO algorithm is used to iteratively solve the optimal inverse deconvolution filter. Finally, envelope spectrum analysis is performed on the filtered signal to realize bearing fault diagnosis. The feasibility of FEAD was first verified by the bearing fault simulation signals at constant and variable speeds. The bearing test signals from Case Western Reserve University (CWRU), the railway wheelset and the test bench validated the good performance of FEAD in fault feature enhancement. A comparison with and quantitative results for the other state-of-the-art BD methods indicated the superiority of the proposed method.

2.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177539

RESUMO

Rolling element bearing (REB) vibration signals under variable speed (VS) have non-stationary characteristics. Order tracking (OT) and time-frequency analysis (TFA) are two widely used methods for REB fault diagnosis under VS. However, the effect of OT methods is affected by resampling errors and close-order harmonic interference, while the accuracy of TFA methods is mainly limited by time-frequency resolution and ridge extraction algorithms. To address this issue, a novel method based on envelope spectrum fault characteristic frequency band identification (FCFBI) is proposed. Firstly, the characteristics of the bearing fault vibration signal's envelope spectrum under VS are analyzed in detail and the fault characteristic frequency band (FCFB) is introduced as a new and effective representation of faults. Then, fault templates based on FCFB are constructed as reference for fault identification. Finally, based on the calculation of the correlation coefficients between the envelope spectrum and fault templates in the extended FCFB, the bearing fault can be diagnosed automatically according to the preset correlation coefficient criterion. Two bearing VS experiments indicate that the proposed method can achieve satisfactory diagnostic accuracy. The comparison of OT and TFA methods further demonstrates the comprehensive superiority of the proposed method in the overall consideration of accuracy, diagnostic time, tachometer dependency, and automatic degree.

3.
Entropy (Basel) ; 24(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35205492

RESUMO

The complex and harsh working environment of rolling bearings cause the fault characteristics in vibration signal contaminated by the noise, which make fault diagnosis difficult. In this paper, a feature enhancement method of rolling bearing signal based on variational mode decomposition with K determined adaptively (K-adaptive VMD), and radial based function fuzzy entropy (RBF-FuzzyEn), is proposed. Firstly, a phenomenon called abnormal decline of center frequency (ADCF) is defined in order to determine the parameter K of VMD adaptively. Then, the raw signal is separated into K intrinsic mode functions (IMFs). A coefficient En for selecting optimal IMFs is calculated based on the center frequency bands (CFBs) of all IMFs and frequency spectrum for original signal autocorrelation operation. After that, the optimal IMFs of which En are bigger than the threshold are selected to reconstruct signal. Secondly, RBF is introduced as an innovative fuzzy function to enhance the feature discrimination of fuzzy entropy between bearings in different states. A specific way for determination of parameter r in fuzzy function is also presented. Finally, RBF-FuzzyEn is used to extract features of reconstructed signal. Simulation and experiment results show that K-adaptive VMD can effectively reduce the noise and enhance the fault characteristics; RBF-FuzzyEn has strong feature differentiation, superior noise robustness, and low dependence on data length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...