Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 598: 217077, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908541

RESUMO

The existence of microbiome in human tumors has been determined widely, but evaluating the contribution of intratumoral bacteria and fungi to tumor immunity and prognosis from a pan-cancer perspective remains absent. We designed an improved microbial analysis pipeline to reduce interference from host sequences, complemented with integration analysis of intratumoral microbiota at species level with clinical indicators, tumor microenvironment, and prognosis across cancer types. We found that intratumoral microbiota is associated with immunophenotyping, with high-immunity subtypes showing greater bacterial and fungal richness compared to low-immunity groups. We also noted that the combination of fungi and bacteria demonstrated promising prognostic value across cancer types. We, thus, present The Cancer Microbiota (TCMbio), an interactive platform that provides the intratumoral bacteria and fungi data, and a comprehensive analysis module for 33 types of cancers. This led to the discovery of clinical and prognostic significance of intratumoral microbes.

2.
Microbiol Spectr ; 11(4): e0090423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37260411

RESUMO

The induction of aberrant DNA methylation is the major pathway by which Helicobacter pylori infection induces stomach adenocarcinoma (STAD). The involvement of the non-H. pylori gastric microbiota in this mechanism remains to be examined. RNA sequencing data, clinical information, and DNA methylation data were obtained from The Cancer Genome Atlas (TCGA) STAD project. The Kraken 2 pipeline was employed to explore the microbiome profiles. The microbiome was associated with occurrence, distal metastasis, and prognosis, and differential methylation changes related to distal metastasis and prognosis were analyzed. Bi-directional mediation effects of the intratumoral microbiome and host DNA methylation changes on the metastasis and prognosis of STAD were identified by mediation analysis. The expression of the ZNF215 gene was verified by real-time quantitative PCR (RT-qPCR). A cell counting kit 8 (CCK8) cell proliferation experiment and a cell clone formation experiment were used to evaluate the proliferation and invasion abilities of gastric cells. Our analysis revealed that H. pylori and other cancer-related microorganisms were related to the occurrence, progression, or prognosis of STAD. The related methylated genes were particularly enriched in related cancer pathways. Kytococcus sedentarius and Actinomyces oris, which interacted strongly with methylation changes in immune genes, were associated with prognosis. Cell experiments verified that Staphylococcus saccharolyticus could promote the proliferation and cloning of gastric cells by regulating the gene expression level of the ZNF215 gene. Our study suggested that the bi-directional mediation effect between intratumoral microorganisms and host epigenetics was key to the distal metastasis of cancer cells and survival deterioration in the tumor microenvironment of stomach tissues of patients with STAD. IMPORTANCE The burgeoning field of oncobiome research declared that members of the intratumoral microbiome besides Helicobacter pylori existed in tumor tissues and participated in the occurrence and development of gastric cancer, and the methylation of host DNA may be a potential target of microbes and their metabolites. Current research focuses mostly on species composition, but the functional genes of the members of the microbiota are also key to their interaction with the host. Therefore, we focused on characterizing the species composition and functional gene composition of microbes in gastric cancer, and we suggest that microbes may further participate in the occurrence and development of cancer by influencing abnormal epigenetic changes in the host. Some key bioinformatics analysis results were verified by in vitro experiments. Thus, we consider that the tumor microbiota-host epigenetic axis of gastric cancer microorganisms and the host explains the mechanism of the microbiota participating in cancer occurrence and development, and we make some verifiable experimental predictions.


Assuntos
Adenocarcinoma , Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Metilação de DNA , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Infecções por Helicobacter/genética , Infecções por Helicobacter/complicações , Helicobacter pylori/genética , Adenocarcinoma/genética , Adenocarcinoma/complicações , Microambiente Tumoral
3.
Microbiol Spectr ; 11(3): e0315222, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995230

RESUMO

Vulvovaginal candidiasis (VVC) can alter the vaginal microbiome composition and structure, and this may be correlated with its variable treatment efficacy. Integrated analysis of the mycobiome and bacteriome in VVC could facilitate accurate diagnosis of infected patients and further decipher the characterized bacteriome in different types of VVC. Our mycobiome analysis determined two common types of VVC, which were clustered into two community state types (CSTs) featured by Candida glabrata (CST I) and Candida albicans (CST II). Subsequently, we compared the vaginal bacteriome in two CSTs of VVC and two other types of reproductive tract infections (RTIs), bacterial vaginosis (BV) and Ureaplasma urealyticum (UU) infection. The vaginal bacteriome in VVC patients was between the healthy and other RTIs (BV and UU) status, it bore the greatest resemblance to that of healthy subjects. While BV and UU patients have the unique vaginal microbiota community structure, which very different with healthy women. Compared with CST II, the vaginal bacteriome of CST I VVC was characterized by Prevotella, a key signature in BV. In comparison, CST II was featured by Ureaplasma, the pathogen of UU. The findings of our study highlight the need for co-analysis and simultaneous consideration of vaginal mycobiome and bacteriome in the diagnosis and treatment of VVC to solve common clinical problems, such as unsatisfactory cure rates and recurrent symptoms. IMPORTANCE Fungi headed by C. albicans play a critical role in VVC but are not sufficient for its occurrence, indicating the involvement of other factors, such as the vaginal bacteriome. We found that different CST correspond to different bacterial composition in patients with VVC, and this could underlie the alteration of vaginal microorganism environment in VVC patients. We believe that this correlation should not be ignored, and it may be related to the unsatisfactory treatment outcomes and high recurrence rate of VVC. Here, we provided evidence for associations between vaginal bacteriome patterns and fungal infection. Screening specific biomarkers for three common RTIs paves a theoretical basis for further development of personalized precision treatment.


Assuntos
Candidíase Vulvovaginal , Micobioma , Vaginose Bacteriana , Humanos , Feminino , Candidíase Vulvovaginal/diagnóstico , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Vagina/microbiologia , Candida albicans , Vaginose Bacteriana/diagnóstico , Vaginose Bacteriana/epidemiologia , Vaginose Bacteriana/microbiologia
4.
J Transl Med ; 21(1): 221, 2023 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-36967379

RESUMO

BACKGROUND: Neoadjuvant concurrent chemoradiotherapy (nCCRT) is a standard treatment for locally advanced rectal cancer (LARC). The gut microbiome may be reshaped by radiotherapy through its effects on microbial composition, mucosal immunity, and the systemic immune system. We sought to clarify dynamic, longitudinal changes in the gut microbiome and blood immunomodulators throughout nCCRT and to explore the relationship of such changes with outcomes after nCCRT. METHODS: A total of 39 patients with LARC were recruited for this study. Fecal samples and peripheral blood samples were collected from all 39 patients before nCCRT, during nCCRT (at week 3), and after nCCRT (at week 5). The gut microbiota and the microbial community structure were analyzed by 16S rRNA sequencing of the V3-V4 region. Levels of blood immunomodulatory proteins were measured with a Millipore HCKPMAG-11 K kit and Luminex 200 platform (Luminex, USA). RESULTS: Cross-sectional and longitudinal analyses revealed that the gut microbiome profile and enterotype exhibited characteristic variations that could distinguish patients with good response (AJCC TRG classification 0-1) vs poor response (TRG 2-3) to nCCRT. Sparse partial least squares regression and canonical correspondence analyses showed multivariate associations between specific microbial taxa, host immunomodulatory proteins, immune cells, and outcomes after nCCRT. An integrated model consisting of baseline Clostridium sensu stricto 1 levels, fold changes in Intestinimonas, blood levels of the herpesvirus entry mediator (HVEM/CD270), and lymphocyte counts could predict good vs poor outcome after nCCRT [area under the receiver-operating characteristics curve (AUC)= 0.821; area under the precision-recall curve [AUPR] = 0.911]. CONCLUSIONS: Our results showed that longitudinal variations in specific gut taxa, associated host immune cells, and immunomodulatory proteins before and during nCCRT could be useful for early predictions of the efficacy of nCCRT, which could guide the choice of individualized treatment for patients with LARC.


Assuntos
Microbioma Gastrointestinal , Neoplasias Retais , Humanos , Estudos Prospectivos , Terapia Neoadjuvante/métodos , Estudos Transversais , RNA Ribossômico 16S/genética , Neoplasias Retais/terapia , Resultado do Tratamento , Quimiorradioterapia
5.
Microbiol Spectr ; : e0354922, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36975828

RESUMO

Microbiota can influence the occurrence, development, and therapeutic response of a wide variety of cancer types by modulating immune responses to tumors. Recent studies have demonstrated the existence of intratumor bacteria inside ovarian cancer (OV). However, whether intratumor microbes are associated with tumor microenvironment (TME) and prognosis of OV still remains unknown. The RNA-sequencing data and clinical and survival data of 373 patients with OV in The Cancer Genome Atlas (TCGA) were collected and downloaded. According to the knowledge-based functional gene expression signatures (Fges), OV was classified into two subtypes, termed immune-enriched and immune-deficient subtypes. The immune-enriched subtype, which had higher immune infiltration enriched with CD8+ T cells and the M1 type of macrophages (M1) and higher tumor mutational burden, exhibited a better prognosis. Based on the Kraken2 pipeline, the microbiome profiles were explored and found to be significantly different between the two subtypes. A prediction model consisting of 32 microbial signatures was constructed using the Cox proportional-hazard model and showed great prognostic value for OV patients. The prognostic microbial signatures were strongly associated with the hosts' immune factors. Especially, M1 was strongly associated with five species (Achromobacter deleyi and Microcella alkaliphila, Devosia sp. strain LEGU1, Ancylobacter pratisalsi, and Acinetobacter seifertii). Cell experiments demonstrated that Acinetobacter seifertii can inhibit macrophage migration. Our study demonstrated that OV could be classified into immune-enriched and immune-deficient subtypes and that the intratumoral microbiota profiles were different between the two subtypes. Furthermore, the intratumoral microbiome was closely associated with the tumor immune microenvironment and OV prognosis. IMPORTANCE Recent studies have demonstrated the existence of intratumoral microorganisms. However, the role of intratumoral microbes in the development of ovarian cancer and their interaction with the tumor microenvironment are largely unknown. Our study demonstrated that OV could be classified into immune-enriched and -deficient subtypes and that the immune enrichment subtype had a better prognosis. Microbiome analysis showed that intratumor microbiota profiles were different between the two subtypes. Furthermore, the intratumor microbiome was an independent predictor of OV prognosis that could interact with immune gene expression. Especially, M1 was closely associated with intratumoral microbes, and Acinetobacter seifertii could inhibit macrophage migration. Together, the findings of our study highlight the important roles of intratumoral microbes in the TME and prognosis of OV, paving the way for further investigation into its underlying mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...