Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 48(2): 300-310, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725219

RESUMO

As one of the most frequent complications of diabetes, diabetic neuropathy often involves peripheral and central nervous systems. Neuroinflammation is the key pathogenic factor of secondary nerve injury in diabetes. NOD-like receptor pyrin domain-containing 3(NLRP3) inflammasome is a group of subcellular multiprotein complexes, including NLRP3, apoptosis associated speck-like protein(ASC), and pro-cysteinyl aspartate specific proteinase 1(pro-caspase-1). NLRP3 inflammasome is an inducer of innate immune responses. Its activation stimulates the inflammatory cascade reaction, promotes the release of inflammatory mediators, triggers cell death and uncontrolled autophagy, activates glial cells, facilitates peripheral immune cell infiltration, and initiates amyoid ß(Aß)-tau cascade reactions. As a result, it contributes to the central nerve, somatic nerve, autonomic nerve, and retinal nerve cell damage secondary to diabetes. Therefore, due to its key role in the neuroinflammation responses of the body, NLRP3 inflammasome may provide new targets for the treatment of diabetic neuropathy. With multi-target and low-toxicity advantages, traditional Chinese medicine plays a vital role in the treatment of diabetic neuropathy. Accumulating evidence has shown that traditional Chinese medicine exerts curative effects on diabetic neuropathy possibly through regulating NLRP3 inflammasome. Although the role of NLRP3 inflammasome in diabetes and related complications has been investigated in the literature, systematical studies on drugs and mechanism analysis for secondary neuropathy are still lacking. In this article, the role of NLRP3 inflammasome in diabetic neuropathy was explored, and the research progress on traditional Chinese medicine in the treatment of diabetic neuropathy through NLRP3 inflammasome was reviewed.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Medicina Tradicional Chinesa , Doenças Neuroinflamatórias , Inflamação
2.
CNS Neurosci Ther ; 29 Suppl 1: 59-73, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36601656

RESUMO

BACKGROUND: Diabetic cognitive dysfunction (DCD) is one of the most insidious complications of type 2 diabetes mellitus, which can seriously affect the ability to self-monitoring of blood glucose and the quality of life in the elderly. Previous pathological studies of cognitive dysfunction have focused on neuronal dysfunction, characterized by extracellular beta-amyloid deposition and intracellular tau hyperphosphorylation. In recent years, astrocytes have been recognized as a potential therapeutic target for cognitive dysfunction and important participants in the central control of metabolism. The disorder of gut microbiota and their metabolites have been linked to a series of metabolic diseases such as diabetes mellitus. The imbalance of intestinal flora has the effect of promoting the occurrence and deterioration of several diabetes-related complications. Gut microbes and their metabolites can drive astrocyte activation. AIMS: We reviewed the pathological progress of DCD related to the "gut microbiota-astrocyte" axis in terms of peripheral and central inflammation, intestinal and blood-brain barrier (BBB) dysfunction, systemic and brain energy metabolism disorders to deepen the pathological research progress of DCD and explore the potential therapeutic targets. CONCLUSION: "Gut microbiota-astrocyte" axis, unique bidirectional crosstalk in the brain-gut axis, mediates the intermediate pathological process of neurocognitive dysfunction secondary to metabolic disorders in diabetes mellitus.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Idoso , Microbioma Gastrointestinal/fisiologia , Astrócitos , Diabetes Mellitus Tipo 2/complicações , Qualidade de Vida , Disfunção Cognitiva/etiologia
3.
Front Pharmacol ; 11: 585487, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381036

RESUMO

Type 2 diabetes mellitus (T2DM) is a chronic disease that has become a global public health problem. Studies on T2DM prevention and treatment mostly focus on discovering therapeutic drugs. Artemisinin and its derivatives were originally used as antimalarial treatments. In recent years, the roles of artemisinins in T2DM have attracted much attention. Artemisinin treatments not only attenuate insulin resistance and restore islet ß-cell function in T2DM but also have potential therapeutic effects on diabetic complications, including diabetic kidney disease, cognitive impairment, diabetic retinopathy, and diabetic cardiovascular disease. Many in vitro and in vivo experiments have confirmed the therapeutic utility of artemisinin and its derivatives on T2DM, but no article has systematically demonstrated the specific role artemisinin plays in the treatment of T2DM. This review summarizes the potential therapeutic effects and mechanism of artemisinin and its derivatives in T2DM and associated complications, providing a reference for subsequent related research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...