Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8014): 1021-1026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750362

RESUMO

Nanoscale structures can produce extreme strain that enables unprecedented material properties, such as tailored electronic bandgap1-5, elevated superconducting temperature6,7 and enhanced electrocatalytic activity8,9. While uniform strains are known to elicit limited effects on heat flow10-15, the impact of inhomogeneous strains has remained elusive owing to the coexistence of interfaces16-20 and defects21-23. Here we address this gap by introducing inhomogeneous strain through bending individual silicon nanoribbons on a custom-fabricated microdevice and measuring its effect on thermal transport while characterizing the strain-dependent vibrational spectra with sub-nanometre resolution. Our results show that a strain gradient of 0.112% per nanometre could lead to a drastic thermal conductivity reduction of 34 ± 5%, in clear contrast to the nearly constant values measured under uniform strains10,12,14,15. We further map the local lattice vibrational spectra using electron energy-loss spectroscopy, which reveals phonon peak shifts of several millielectron-volts along the strain gradient. This unique phonon spectra broadening effect intensifies phonon scattering and substantially impedes thermal transport, as evidenced by first-principles calculations. Our work uncovers a crucial piece of the long-standing puzzle of lattice dynamics under inhomogeneous strain, which is absent under uniform strain and eludes conventional understanding.

2.
Sci Adv ; 10(11): eadl6498, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478599

RESUMO

Designing a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (ZnxCu3-x) (hexahydroxytriphenylene)2 (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions. This approach for atomistic interlayer design allows for the finely control of the charge transport, band structure, and dielectric properties of the cMOF. As a result, Zn3Cu1-HHTP, with an optimal dielectric property, exhibits high-efficiency absorption in the gigahertz microwave range, achieving an ultra-strong reflection loss of -81.62 decibels. This study not only advances the understanding of the microstructure-function relationships in cMOFs but also offers a generic nanotechnology-based approach to achieving controllable interlayer spacing in MOFs for the targeted applications.

3.
Nat Commun ; 15(1): 1223, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336946

RESUMO

The transformation induced plasticity phenomenon occurs when one phase transforms to another one during plastic deformation, which is usually diffusionless. Here we present elemental partitioning-mediated crystalline-to-amorphous phase transformation during quasi-static plastic deformation, in an alloy in form of a Cr-Ni-Co (crystalline)/Zr-Ti-Nb-Hf-Ni-Co (amorphous) nanolaminated composite, where the constitute elements of the two phases have large negative mixing enthalpy. Upon plastic deformation, atomic intermixing occurs between adjacent amorphous and crystalline phases due to extensive rearrangement of atoms at the interfaces. The large negative mixing enthalpy among the constituent elements promotes amorphous phase transformation of the original crystalline phase, which shows different composition and short-range-order structure compared with the other amorphous phase. The reduced size of the crystalline phase shortens mean-free-path of dislocations, facilitating strain hardening. The enthalpy-guided alloy design based on crystalline-to-amorphous phase transformation opens up an avenue for the development of crystal-glass composite alloys with ultrahigh strength and large plasticity.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36757902

RESUMO

In this study, a straightforward two-step hydrothermal process was used to synthesize Fe-doped NiO nanomaterials. A number of characterization approaches were employed to explore the structure and morphology of the synthesized Fe-doped NiO. The as-prepared samples were multi-layered flower-like structures formed by nanoparticles, according to scanning electron microscopy and transmission electron microscopy studies. The findings of the study on gas sensing performance showed that the response of the 1.5 at % Fe-NiO sensor was nearly 100 times greater than that of the pure NiO sensor, and the lower limit of detection was greatly decreased (50 ppb). The 1.5 at % Fe-NiO sensor exhibited superior sensing performance for n-butanol. The incorporation of an appropriate amount of Fe into the NiO lattice modified the carrier concentration, which is the primary cause of the increased sensor performance of an appropriate amount of Fe-doped NiO. In addition, the density functional theory calculation method based on the first-principles theory was used to study the adsorption performance and electronic behavior of pure NiO and 1.5 at % Fe-NiO for n-butanol. The calculated results were consistent with the experimental results.

5.
Nanomicro Lett ; 14(1): 179, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048370

RESUMO

Ultrathin, lightweight, and flexible aligned single-walled carbon nanotube (SWCNT) films are fabricated by a facile, environmentally friendly, and scalable printing methodology. The aligned pattern and outstanding intrinsic properties render "metal-like" thermal conductivity of the SWCNT films, as well as excellent mechanical strength, flexibility, and hydrophobicity. Further, the aligned cellular microstructure promotes the electromagnetic interference (EMI) shielding ability of the SWCNTs, leading to excellent shielding effectiveness (SE) of ~ 39 to 90 dB despite a density of only ~ 0.6 g cm-3 at thicknesses of merely 1.5-24 µm, respectively. An ultrahigh thickness-specific SE of 25 693 dB mm-1 and an unprecedented normalized specific SE of 428 222 dB cm2 g-1 are accomplished by the freestanding SWCNT films, significantly surpassing previously reported shielding materials. In addition to an EMI SE greater than 54 dB in an ultra-broadband frequency range of around 400 GHz, the films demonstrate excellent EMI shielding stability and reliability when subjected to mechanical deformation, chemical (acid/alkali/organic solvent) corrosion, and high-/low-temperature environments. The novel printed SWCNT films offer significant potential for practical applications in the aerospace, defense, precision components, and smart wearable electronics industries.

6.
ACS Appl Mater Interfaces ; 11(50): 47507-47515, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31752489

RESUMO

Halide perovskites have emerged as promising candidates as the active material in photovoltaics and light-emitting diodes. They possess unusual bulk thermal transport properties that have been the focus of a number of studies, but there is much less understanding of thermal transport in thin films where a diverse range of structures and morphologies are accessible. Here, we report on the tuning of in-plane thermal conductivity in methylammonium lead iodide thin films by morphological control. Using 3-ω measurements, we find that the room temperature thermal conductivity of thermally evaporated methylammonium lead iodide perovskite films ranges from 0.31 to 0.59 W/(m K). We measure a discontinuity in thermal conductivity at the orthorhombic-tetragonal phase transition and explore this using density functional theory and attributing it to a collapse in the phonon group velocity along the c-axis of the tetragonal crystal. Moreover, we have quantified the thermal boundary resistance (Kapitza resistance) for thermally evaporated films, allowing us to estimate the Kapitza length, which is 36 ± 2 nm at room temperature and 15 ± 2 nm at 100 K. Curiously, the Kapitza resistance has a strong temperature dependence which we also explore using density functional theory, with these results suggesting an important role of methylammonium rotational modes in scattering phonons at the crystallite boundaries.

7.
Phys Chem Chem Phys ; 20(42): 27125-27130, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30334033

RESUMO

Superconductivity in different phases of lithium (Li) under high pressure has been widely studied both experimentally and theoretically, whereas detailed first-principles investigation of the microscopic mechanism has been limited to the fcc and bcc phases below 40 GPa. Here, we study the electron-phonon interaction and superconductivity in one interesting high-pressure phase of Li (cI16) between 45 GPa and 76 GPa using first-principles calculations and the Wannier interpolation technique. The nature of superconductivity in the cI16 phase is examined by solving the Eliashberg equations, and the superconducting transition temperature Tc of the Li-cI16 in the range of 45-76 GPa is calculated. We analyze the electron-phonon coupling (EPC) effect on the electronic bands, phonon dispersions, the Fermi surface topology (nesting ξq) and the Eliashberg spectral function α2F(ω) at different pressures. In particular, α2F(ω) shows an anomalous trend in spectral weight at a low-frequency region with increasing pressure, which originates from the reduction of the nesting function ξq. The trend of the EPC strength from each phonon branch with pressure is also presented in detail. Another interesting phenomenon from our calculation is the tendency of a metal-to-semiconductor transition with structural optimization at different pressures, which have been reported by previous experiments. Our theoretical studies demonstrate clearly the mechanism behind the anomalous superconducting properties of the high-pressure Li-cI16 phase.

8.
Nanoscale ; 9(21): 7227-7234, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513696

RESUMO

The manipulation of thermal transport is in increasing demand as heat transfer plays a critical role in a wide range of practical applications, such as efficient heat dissipation in nanoelectronics and heat conduction hindering in solid-state thermoelectrics. It is well established that the thermal transport in semiconductors and insulators (phonons) can be effectively modulated by structure engineering or materials processing. However, almost all the existing approaches involve altering the original atomic structure of materials, which would be hindered due to either irreversible structure change or limited tunability of thermal conductivity. Motivated by the inherent relationship between phonon behavior and interatomic electrostatic interaction, we comprehensively investigate the effect of external electric field, a widely used gating technique in modern electronics, on the lattice thermal conductivity (κ). Taking two-dimensional silicon (silicene) as a model, we demonstrate that by applying an electric field (Ez = 0.5 V Å-1) the κ of silicene can be reduced to a record low value of 0.091 W m-1 K-1, which is more than two orders of magnitude lower than that without an electric field (19.21 W m-1 K-1) and is even comparable to that of the best thermal insulation materials. Fundamental insights are gained from observing the electronic structures. With an electric field applied, due to the screened potential resulting from the redistributed charge density, the interactions between silicon atoms are renormalized, leading to phonon renormalization and the modulation of phonon anharmonicity through electron-phonon coupling. Our study paves the way for robustly tuning phonon transport in materials without altering the atomic structure, and would have significant impact on emerging applications, such as thermal management, nanoelectronics and thermoelectrics.

9.
Nanoscale ; 8(21): 11306-19, 2016 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189263

RESUMO

New classes of two-dimensional (2D) materials beyond graphene, including layered and non-layered, and their heterostructures, are currently attracting increasing interest due to their promising applications in nanoelectronics, optoelectronics and clean energy, where thermal transport is a fundamental physical parameter. In this paper, we systematically investigated the phonon transport properties of the 2D orthorhombic group IV-VI compounds of GeS, GeSe, SnS and SnSe by solving the Boltzmann transport equation (BTE) based on first-principles calculations. Despite their similar puckered (hinge-like) structure along the armchair direction as phosphorene, the four monolayer compounds possess diverse anisotropic properties in many aspects, such as phonon group velocity, Young's modulus and lattice thermal conductivity (κ), etc. Especially, the κ along the zigzag and armchair directions of monolayer GeS shows the strongest anisotropy while monolayer SnS and SnSe show almost isotropy in phonon transport. The origin of the diverse anisotropy is fully studied and the underlying mechanism is discussed in details. With limited size, the κ could be effectively lowered, and the anisotropy could be effectively modulated by nanostructuring, which would extend the applications to nanoscale thermoelectrics and thermal management. Our study offers fundamental understanding of the anisotropic phonon transport properties of 2D materials, and would be of significance for further study, modulation and applications in emerging technologies.

11.
Sci Rep ; 5: 15440, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26490342

RESUMO

The effects of temperature, tube length, defects, and surface functionalization on the thermal conductivity (κ) of single-walled carbon nanotubes (SWCNTs) were well documented in literature. However, diameter dependence of thermal conductivity of SWCNTs received less attentions. So far, diverse trends of the diameter dependence have been discussed by different methods and all the previous results were based on empirical interatomic potentials. In this paper, we emphasize to clarify accurate κ values of SWCNTs with different diameters and in-plane κ of graphene. All the studies were under the framework of anharmonic lattice dynamics and Boltzmann transport equation (BTE) based on first principle calculations. We try to infer the right trend of diameter dependent thermal conductivity of SWCNTs. We infer that graphene is the limitation as SWCNT with an infinite diameter. We analyzed the thermal conductivity contributions from each phonon mode in SWCNTs to explain the trend. Meanwhile, we also identify the extremely low thermal conductivity of ultra-thin SWCNTs.

12.
Phys Chem Chem Phys ; 17(7): 4854-8, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25594447

RESUMO

Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conductivity of phosphorene by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. The thermal conductivity of phosphorene at 300 K is 30.15 W m(-1) K(-1) (zigzag) and 13.65 W m(-1) K(-1) (armchair), showing an obvious anisotropy along different directions. The calculated thermal conductivity fits perfectly to the inverse relationship with temperature when the temperature is higher than Debye temperature (ΘD = 278.66 K). In comparison to graphene, the minor contribution around 5% of the ZA mode is responsible for the low thermal conductivity of phosphorene. In addition, the representative mean free path (MFP), a critical size for phonon transport, is also obtained.

13.
Sci Rep ; 4: 6946, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25374306

RESUMO

We systematically investigated the geometric, electronic and thermoelectric (TE) properties of bulk black phosphorus (BP) under strain. The hinge-like structure of BP brings unusual mechanical responses such as anisotropic Young's modulus and negative Poisson's ratio. A sensitive electronic structure of BP makes it transform among metal, direct and indirect semiconductors under strain. The maximal figure of merit ZT of BP is found to be 0.72 at 800 K that could be enhanced to 0.87 by exerting an appropriate strain, revealing BP could be a potential medium-high temperature TE material. Such strain-induced enhancements of TE performance are often observed to occur at the boundary of the direct-indirect band gap transition, which can be attributed to the increase of degeneracy of energy valleys at the transition point. By comparing the structure of BP with SnSe, a family of potential TE materials with hinge-like structure are suggested. This study not only exposes various novel properties of BP under strain, but also proposes effective strategies to seek for better TE materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...