Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(17): 4633-4640, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37152259

RESUMO

Triarylboranes-based pure organic room-temperature phosphorescence (RTP) materials are rarely investigated because of their large steric hindrance and the electron defect of the boron atom. As a result, creating functional triarylborane RTP materials is difficult. Herein, we report the first photo-activated RTP materials with lifetimes/quantum yields ≤0.18 s/6.83% based on donor (D)-π-acceptor (A) from methylene carbazole-functionalized aminoborane (BN)-doped polymethyl methacrylate (BN-o-Met-Cz@PMMA) under 365 nm UV irradiation (30 s). Incredibly, BN-o-Met-Cz@PMMA films exhibited unprecedented photo-activated RTP dual-response properties (e.g., air + 365 nm: τ P = 0.18 s, Φ P = 6.83%; N2 + 365 nm: τ P = 0.42 s, Φ P = 17.34%). Intriguingly, the BN (D-π-A) system demonstrated good versatility for photo-activated RTP whether the electron-donating group or electron-withdrawing group was placed in the ortho (meta)-position of the B atom. As a result, a series of photo-activated single-molecule organic RTP materials with multi-color emission, high quantum yields, and ultra-long lifetimes can be prepared rapidly. BN-X@PMMA films showed broad application prospects for information encryption, data erasure, anti-counterfeiting, and water resistance. Our method provides new strategies for the design, synthesis, and application of RTP materials, thereby enriching the types of organic RTP materials and facilitating further developments in this area.

2.
Anal Chem ; 95(13): 5594-5600, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36942711

RESUMO

As intelligent probes, dynamic and controllable molecular switches are useful tools for probing and intervening in life processes. However, the types and properties of molecular switches are still relatively single and often can only make two actions: "off" and "on". Therefore, the development of novel molecular switches with multiple colors and multiple instructions is very challenging. Herein, we propose a novel strategy based on the instability of the Lewis acid-base pair (boron (B) and nitrogen (N)), such as introducing the Schiff base (C═N) group into the aminoborane skeleton and preparing the novel molecular switches BN-HDZ and BN-HDZ-N. These two molecules were found to have good multicolor fluorescence switching capability for methanol. Surprisingly, the compound BN-HDZ-N shows unprecedented visual identification for the butanol isomers and could be made into a portable strip for simple and rapid visual identification of the four isomers of butanol, promising an alternative to conventional Lucas reagents. This provides a novel strategy for the design and fabrication of novel multicolor-tunable molecular switches with visual identification of isomers.

3.
J Phys Chem Lett ; 13(43): 10190-10197, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36281994

RESUMO

Triarylphosphine-based pure organic long persistent luminescence materials are rarely investigated because of their poor stability and low photoluminescence quantum yield. Herein, we demonstrate that the introduction of a methoxy group (TPP-o-3OMe) at the ortho position of triphenylphosphine (TPP) can essentially promote the n → π* transition and promote intersystem crossing to generate more triplet excitons. Simultaneously, generating abundant intramolecular and intermolecular hydrogen bonds to stable excited triplet excitons is beneficial, thereby causing high-efficiency phosphorescence emission (τp = 394.1 ms; Φp = 9.28%). Interestingly, it shows a good acid response to protonic acids and can often be cycled many times under the heating or ammonia fumigation conditions. This research provides a new idea for enriching the types of pure organic room-temperature phosphorescent materials, widening their applications in the fields of anticounterfeiting and smart response, and promotes the further development of this field.

4.
J Sep Sci ; 45(14): 2663-2674, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35562644

RESUMO

In this study, a new method for the determination of fipronil and its three metabolites in environmental water samples was developed based on meltblown nonwoven fabric solid-phase extraction combined with gas chromatography-electron capture detection. As the core material of medical masks, meltblown nonwoven fabric is made of polypropylene superfine fibers which are randomly distributed and bonded together with a relatively large specific surface area and good permeability. Polypropylene as a high molecular hydrocarbon-based polymer has the characteristics of good hydrophobicity and lipophilicity, which can be applied for the separation and enrichment of hydrophobic substances in food, environment, and biological samples. The meltblown nonwoven fabric is soft and can fill the solid-phase extraction cartridge tightly. This aspect also makes it suitable to be used as an ideal solid-phase extraction sorbent. A series of parameters influencing the extraction efficiency were investigated, and under the optimized conditions, fipronil and its three metabolites had a good linear relationship in the range of 0.2-100 µg/L with a correlation coefficient R2 of more than 0.999. The recoveries at three spiked concentrations were in the range of 99.2-107.3% with the relative standard deviations less than 9.8% (intra-day) and 8.1% (inter-day). The limit of detection for the four target analytes was in the range of 0.02-0.06 µg/L. Finally, this method was successfully applied in the analysis of fipronil and its three metabolites in various types of environmental water samples.


Assuntos
Elétrons , Polipropilenos , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão/métodos , Pirazóis , Extração em Fase Sólida/métodos , Água
5.
Food Chem ; 377: 132021, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34999456

RESUMO

In this study, a convenient and economic method for the determination of fipronil and its three metabolites in edible oil was developed based on pollen grain solid-phase extraction (SPE). As a natural material, pollen grains exhibit well absorption capacity for some polar compounds due to their special functional structures. Their stable composition and appropriate particle size also make them suitable for SPE. In the present study, natural pine pollen grains without broken wall were used as sorbent for selective isolation and enrichment of fipronil and its three metabolites from edible oils based on hydrogen bond interaction. Several parameters influencing the extraction recoveries were investigated. By coupling with gas chromatography-electron capture detection (GC-ECD), a new method for analysis of fipronil and its metabolites in edible oils was established. The linearity range was 2-200 ng/g with correlation coefficient R2 more than 0.999. The recoveries in edible oils at three spiked concentrations were in the range of 80.1-96.0% with the RSDs less than 10.6% (intra-day) and 11.5% (inter-day). The limit of detection (LOD) for four target analytes were in the range of 0.2-0.6 ng/g, which was comparable to the previous reported methods. Finally, the established method was successfully applied to detect fipronil and its metabolites in several oil samples with different brands from local market.


Assuntos
Elétrons , Extração em Fase Sólida , Cromatografia Gasosa , Pólen , Pirazóis
6.
J Sep Sci ; 45(6): 1262-1272, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35029014

RESUMO

In this work, a simple and miniaturized solid-phase extraction device was constructed by connecting a commercial nylon needle filter to a syringe, which was applied for extracting 1-hydroxypyrene from a urine sample via hydrophobic and hydrogen bond interactions. The nylon membrane in the needle filter acted as the solid-phase extraction adsorbent, meanwhile, it filtered the particles in the urine sample. To obtain high extraction efficiency, key parameters influencing extraction recovery were investigated. The entire pretreatment process was accomplished within 5 min under the optimal conditions. By coupling high-performance liquid chromatography-ultraviolet, a rapid, low-cost, and convenient nylon needle filter-based method was established for the analysis of 1-hydroxypyrene in a complex urine matrix. Within the linearity range of 0.2-1000 µg/L, the method exhibited a satisfactory correlation coefficient (R = 0.9999). The limit of detection was 0.06 µg/L, and the recoveries from urine sample spiked with three concentrations (5, 20, and 100 µg/L) ranged from 105.8% to 113.1% with the relative standard deviations less than 6.7% (intra-day, n = 6) and 8.9% (inter-day, n = 4). Finally, the proposed method was successfully applied for detecting 1-hydroxypyrene in urine samples from college students, smokers, gas station workers, and chip factory workers. The detected concentration in actual urine samples ranged from 0.46 to 5.26 µg/L. Taken together, this simple and cost-effective nylon needle filter-based solid-phase extraction device showed an excellent application potential for pretreating hydrophobic analytes from aqueous samples.


Assuntos
Nylons , Extração em Fase Sólida , Cromatografia Líquida de Alta Pressão , Humanos , Pirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...