Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0298564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008464

RESUMO

High-quality, chromosome-scale genomes are essential for genomic analyses. Analyses, including 3D genomics, epigenetics, and comparative genomics rely on a high-quality genome assembly, which is often accomplished with the assistance of Hi-C data. Curation of genomes reveal that current Hi-C-assisted scaffolding algorithms either generate ordering and orientation errors or fail to assemble high-quality chromosome-level scaffolds. Here, we offer the software Puzzle Hi-C, which uses Hi-C reads to accurately assign contigs or scaffolds to chromosomes. Puzzle Hi-C uses the triangle region instead of the square region to count interactions in a Hi-C heatmap. This strategy dramatically diminishes scaffolding interference caused by long-range interactions. This software also introduces a dynamic, triangle window strategy during assembly. Initially small, the window expands with interactions to produce more effective clustering. Puzzle Hi-C outperforms available scaffolding tools.


Assuntos
Algoritmos , Genômica , Software , Genômica/métodos , Cromossomos/genética , Humanos , Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...