Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23684, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38795334

RESUMO

Exposure to chronic psychosocial stress is a risk factor for metabolic disorders. Because dipeptidyl peptidase-4 (DPP4) and cysteinyl cathepsin K (CTSK) play important roles in human pathobiology, we investigated the role(s) of DPP4 in stress-related adipocyte differentiation, with a focus on the glucagon-like peptide-1 (GLP-1)/adiponectin-CTSK axis in vivo and in vitro. Plasma and inguinal adipose tissue from non-stress wild-type (DPP4+/+), DPP4-knockout (DPP4-/-) and CTSK-knockout (CTSK-/-) mice, and stressed DPP4+/+, DPP4-/-, CTSK-/-, and DPP4+/+ mice underwent stress exposure plus GLP-1 receptor agonist exenatide loading for 2 weeks and then were analyzed for stress-related biological and/or morphological alterations. On day 14 under chronic stress, stress decreased the weights of adipose tissue and resulted in harmful changes in the plasma levels of DPP4, GLP-1, CTSK, adiponectin, and tumor necrosis factor-α proteins and the adipose tissue levels of CTSK, preadipocyte factor-1, fatty acid binding protein-4, CCAAT/enhancer binding protein-α, GLP-1 receptor, peroxisome proliferator-activated receptor-γ, perilipin2, secreted frizzled-related protein-4, Wnt5α, Wnt11 and ß-catenin proteins and/or mRNAs as well as macrophage infiltration in adipose tissue; these changes were rectified by DPP4 deletion. GLP-1 receptor activation and CTSK deletion mimic the adipose benefits of DPP4 deficiency. In vitro, CTSK silencing and overexpression respectively prevented and facilitated stress serum and oxidative stress-induced adipocyte differentiation accompanied with changes in the levels of pref-1, C/EBP-α, and PPAR-γ in 3T3-L1 cells. Thus, these findings indicated that increased DPP4 plays an essential role in stress-related adipocyte differentiation, possibly through a negative regulation of GLP-1/adiponectin-CTSK axis activation in mice under chronic stress conditions.


Assuntos
Adipócitos , Adiponectina , Catepsina K , Diferenciação Celular , Dipeptidil Peptidase 4 , Peptídeo 1 Semelhante ao Glucagon , Camundongos Knockout , Animais , Camundongos , Adiponectina/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Adipócitos/metabolismo , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/genética , Catepsina K/metabolismo , Catepsina K/genética , Masculino , Camundongos Endogâmicos C57BL , Estresse Psicológico/metabolismo , Células 3T3-L1 , Exenatida/farmacologia , PPAR gama/metabolismo , Adipogenia
2.
Cell Mol Life Sci ; 81(1): 205, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703204

RESUMO

BACKGROUND: Exposure to chronic psychological stress (CPS) is a risk factor for thrombotic cardiocerebrovascular diseases (CCVDs). The expression and activity of the cysteine cathepsin K (CTSK) are upregulated in stressed cardiovascular tissues, and we investigated whether CTSK is involved in chronic stress-related thrombosis, focusing on stress serum-induced endothelial apoptosis. METHODS AND RESULTS: Eight-week-old wild-type male mice (CTSK+/+) randomly divided to non-stress and 3-week restraint stress groups received a left carotid artery iron chloride3 (FeCl3)-induced thrombosis injury for biological and morphological evaluations at specific timepoints. On day 21 post-stress/injury, the stress had enhanced the arterial thrombi weights and lengths, in addition to harmful alterations of plasma ADAMTS13, von Willebrand factor, and plasminogen activation inhibitor-1, plus injured-artery endothelial loss and CTSK protein/mRNA expression. The stressed CTSK+/+ mice had increased levels of injured arterial cleaved Notch1, Hes1, cleaved caspase8, matrix metalloproteinase-9/-2, angiotensin type 1 receptor, galactin3, p16IN4A, p22phox, gp91phox, intracellular adhesion molecule-1, TNF-α, MCP-1, and TLR-4 proteins and/or genes. Pharmacological and genetic inhibitions of CTSK ameliorated the stress-induced thrombus formation and the observed molecular and morphological changes. In cultured HUVECs, CTSK overexpression and silencing respectively increased and mitigated stressed-serum- and H2O2-induced apoptosis associated with apoptosis-related protein changes. Recombinant human CTSK degraded γ-secretase substrate in a dose-dependent manor and activated Notch1 and Hes1 expression upregulation. CONCLUSIONS: CTSK appeared to contribute to stress-related thrombosis in mice subjected to FeCl3 stress, possibly via the modulation of vascular inflammation, oxidative production and apoptosis, suggesting that CTSK could be an effective therapeutic target for CPS-related thrombotic events in patients with CCVDs.


Assuntos
Apoptose , Catepsina K , Cloretos , Modelos Animais de Doenças , Compostos Férricos , Trombose , Animais , Humanos , Masculino , Camundongos , Proteína ADAMTS13/metabolismo , Proteína ADAMTS13/genética , Catepsina K/metabolismo , Catepsina K/genética , Cloretos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Estresse Psicológico/complicações , Estresse Psicológico/metabolismo , Trombose/metabolismo , Trombose/patologia , Fatores de Transcrição HES-1/metabolismo , Fatores de Transcrição HES-1/genética
3.
Cell Mol Life Sci ; 80(9): 254, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37589754

RESUMO

Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS+/+) and CTSS-knockout (CTSS-/-) mice were randomly assigned to non-stress and variable-stress groups. CTSS+/+ stressed mice showed significant losses of muscle mass, dysfunction, and fiber area, plus significant mitochondrial damage. In this setting, stressed muscle in CTSS+/+ mice presented harmful alterations in the levels of insulin receptor substrate 2 protein content (IRS-2), phospho-phosphatidylinositol 3-kinase, phospho-protein kinase B, and phospho-mammalian target of rapamycin, forkhead box-1, muscle RING-finger protein-1 protein, mitochondrial biogenesis-related peroxisome proliferator-activated receptor-γ coactivator-α, and apoptosis-related B-cell lymphoma 2 and cleaved caspase-3; these alterations were prevented by CTSS deletion. Pharmacological CTSS inhibition mimics its genetic deficiency-mediated muscle benefits. In C2C12 cells, CTSS silencing prevented stressed serum- and oxidative stress-induced IRS-2 protein reduction, loss of the myotube myosin heavy chain content, and apoptosis accompanied by a rectification of investigated molecular harmful changes; these changes were accelerated by CTSS overexpression. These findings demonstrated that CTSS plays a role in IRS-2-related protein anabolism and catabolism and cell apoptosis in stress-induced muscle wasting, suggesting a novel therapeutic strategy for the control of chronic stress-related muscle disease in mice under our experimental conditions by regulating CTSS activity.


Assuntos
Catepsinas , Atrofia Muscular , Estresse Fisiológico , Animais , Masculino , Camundongos , Tecido Adiposo , Músculos , Atrofia Muscular/genética
4.
FASEB J ; 37(8): e23086, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37428652

RESUMO

Cathepsin S (CTSS) is a widely expressed cysteinyl protease that has garnered attention because of its enzymatic and non-enzymatic functions under inflammatory and metabolic pathological conditions. Here, we examined whether CTSS participates in stress-related skeletal muscle mass loss and dysfunction, focusing on protein metabolic imbalance. Eight-week-old male wildtype (CTSS+/+ ) and CTSS-knockout (CTSS-/- ) mice were randomly assigned to non-stress and variable-stress groups for 2 weeks, and then processed for morphological and biochemical studies. Compared with non-stressed mice, stressed CTSS+/+ mice showed significant losses of muscle mass, muscle function, and muscle fiber area. In this setting, the stress-induced harmful changes in the levels of oxidative stress-related (gp91phox and p22phox ,), inflammation-related (SDF-1, CXCR4, IL-1ß, TNF-α, MCP-1, ICAM-1, and VCAM-1), mitochondrial biogenesis-related (PPAR-γ and PGC-1α) genes and/or proteins and protein metabolism-related (p-PI3K, p-Akt, p-FoxO3α, MuRF-1, and MAFbx1) proteins; and these alterations were rectified by CTSS deletion. Metabolomic analysis revealed that stressed CTSS-/- mice exhibited a significant improvement in the levels of glutamine metabolism pathway products. Thus, these findings indicated that CTSS can control chronic stress-related skeletal muscle atrophy and dysfunction by modulating protein metabolic imbalance, and thus CTSS was suggested to be a promising new therapeutic target for chronic stress-related muscular diseases.


Assuntos
Doenças Musculares , Estresse Oxidativo , Camundongos , Masculino , Animais , Fibras Musculares Esqueléticas/metabolismo , Catepsinas/metabolismo , Doenças Musculares/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 43(7): e238-e253, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37128920

RESUMO

BACKGROUND: Exposure to chronic psychological stress is a risk factor for metabolic cardiovascular disease. Given the important role of lysosomal CTSS (cathepsin S) in human pathobiology, we examined the role of CTSS in stress-related thrombosis, focusing on inflammation, oxidative stress, and apoptosis. METHODS: Six-week-old wild-type mice (CTSS+/+) and CTSS-deficient mice (CTSS-/-) randomly assigned to nonstress and 2-week immobilization stress groups underwent iron chloride3 (FeCl3)-induced carotid thrombosis surgery for morphological and biochemical studies. RESULTS: On day 14 poststress/surgery, stress had increased the lengths and weights of thrombi in the CTSS+/+ mice, plus harmful changes in the levels of PAI-1 (plasminogen activation inhibitor-1), ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 13 motifs), and vWF (von Willebrand factor) and arterial tissue CTSS expression. Compared to the nonstressed CTSS+/+ mice, the stressed CTSS-/- mice had decreased levels of PAI-1, vWF, TNF (tumor necrosis factor)-α, interleukin-1ß, toll-like receptor-4, cleaved-caspase 3, cytochrome c, p16INK4A, gp91phox, p22phox, ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein-1), MyD88 (myeloid differentiation primary response 88), and MMP (matrix metalloproteinase)-2/-9 and increased levels of ADAMTS13, SOD (superoxide dismutase)-1/-2, eNOS (endothelial NO synthase), p-Akt (phospho-protein kinase B), Bcl-2 (B-cell lymphoma-2), p-GSK3α/ß (phospho-glycogen synthase kinases alpha and beta), and p-Erk1/2 (phospho-extracellular signal-regulated kinase 1 and 2) mRNAs and/or proteins. CTSS deletion also reduced the arterial thrombus area and endothelial loss. A pharmacological inhibition of CTSS exerted a vasculoprotective action. In vitro, CTSS silencing and overexpression, respectively, reduced and increased the stressed serum and oxidative stress-induced apoptosis of human umbilical vein endothelial cells, and they altered apoptosis-related proteins. CONCLUSIONS: CTSS inhibition appeared to improve the stress-related thrombosis in mice that underwent FeCl3-induction surgery, possibly by reducing vascular inflammation, oxidative stress, and apoptosis. CTSS could thus become a candidate therapeutic target for chronic psychological stress-related thrombotic events in metabolic cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Trombose das Artérias Carótidas , Trombose , Camundongos , Humanos , Animais , Fator de von Willebrand/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Trombose/etiologia , Trombose/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/patologia
6.
J Cachexia Sarcopenia Muscle ; 13(6): 3078-3090, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058630

RESUMO

BACKGROUND: Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS: Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS: Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS: These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.


Assuntos
Transplante de Medula Óssea , Músculos , Camundongos , Animais , Masculino , Camundongos Endogâmicos C57BL , Músculos/metabolismo , Atrofia Muscular/patologia , Envelhecimento/fisiologia , Modelos Animais de Doenças , Camundongos Transgênicos , Mamíferos
7.
Hypertension ; 79(8): 1713-1723, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35726642

RESUMO

BACKGROUND: Chronic psychological stress is a risk factor for kidney disease, including kidney dysfunction and hypertension. Lysosomal CatK (cathepsin K) participates in various human pathobiologies. We investigated the role of CatK in kidney remodeling and hypertension in response to 5/6 nephrectomy injury in mice with or without chronic stress. METHODS: Male 7-week-old WT (wild type; CatK+/+) and CatK-deficient (CatK-/-) mice that were or were not subjected to chronic stress underwent 5/6 nephrectomy. At 8 weeks post-stress/surgery, the stress was observed to have accelerated injury-induced glomerulosclerosis, proteinuria, and blood pressure elevation. RESULTS: Compared with the nonstressed mice, the stressed mice showed increased levels of TLR (Toll-like receptor)-2/4, p22phox, gp91phox, CatK, MMP (matrix metalloproteinase)-2/9, collagen type I and III genes, PPAR-γ (peroxisome proliferator-activated receptor-gamma), NLRP-3 (NOD-like receptor thermal protein domain associated protein 3), p21, p16, and cleaved caspase-8 proteins, podocyte foot process effacement, macrophage accumulation, apoptosis, and decreased levels of Bcl-2 (B cell lymphoma 2) and Sirt1, as well as decreased glomerular desmin expression in the kidneys. These harmful changes were retarded by the genetic or pharmacological inhibition of CatK. Consistently, CatK inhibition ameliorated 5/6 nephrectomy-related kidney injury and dysfunction. In mesangial cells, CatK silencing or overexpression, respectively, reduced or increased the PPAR-γ and cleaved caspase-8 protein levels, providing evidence and a mechanistic explanation of CatK's involvement in PPAR-γ/caspase-8-mediated cell apoptosis in response to superoxide and stressed serum. CONCLUSIONS: These results demonstrate that CatK plays an essential role in kidney remodeling and hypertension in response to 5/6 nephrectomy or stress, possibly via a reduction of glomerular inflammation, apoptosis, and fibrosis, suggesting a novel therapeutic strategy for controlling kidney injury in mice under chronic psychological stress conditions.


Assuntos
Catepsina K/metabolismo , Nefropatias , Deficiência de Potássio , Estresse Fisiológico , Animais , Caspase 8/metabolismo , Catepsina K/genética , Humanos , Hipertensão/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Nefropatias/prevenção & controle , Masculino , Camundongos , Nefrectomia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo
8.
J Cachexia Sarcopenia Muscle ; 13(2): 1197-1209, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35098692

RESUMO

BACKGROUND: Cachexia is a complicated metabolic disorder that is characterize by progressive atrophy of skeletal muscle. Cathepsin K (CTSK) is a widely expressed cysteine protease that has garnered attention because of its enzymatic and non-enzymatic functions in signalling in various pathological conditions. Here, we examined whether CTSK participates in cancer-induced skeletal muscle loss and dysfunction, focusing on protein metabolic imbalance. METHODS: Male 9-week-old wild-type (CTSK+/+ , n = 10) and CTSK-knockout (CTSK-/- , n = 10) mice were injected subcutaneously with Lewis lung carcinoma cells (LLC; 5 × 105 ) or saline, respectively. The mice were then subjected to muscle mass and muscle function measurements. HE staining, immunostaining, quantitative polymerase chain reaction, enzyme-linked immunosorbent assay, and western blotting were used to explore the CTSK expression and IRS1/Akt pathway in the gastrocnemius muscle at various time points. In vitro measurements included CTSK expression, IRS1/Akt pathway-related target molecule expressions, and the diameter of C2C12 myotubes with or without LLC-conditioned medium (LCM). An IRS1 ubiquitin assay, and truncation, co-immunoprecipitation, and co-localization experiments were also performed. RESULTS: CTSK+/+ cachectic animals exhibited loss of skeletal muscle mass (muscle weight loss of 15%, n = 10, P < 0.01), muscle dysfunction (grip strength loss > 15%, n = 10, P < 0.01), and fibre area (average area reduction > 30%, n = 5, P < 0.01). Compared with that of non-cachectic CTSK+/+ mice, the skeletal muscle of cachectic CTSK+/+ mice exhibited greater degradation of insulin receptor substrate 1 (IRS1, P < 0.01). In this setting, cachectic muscles exhibited decreases in the phosphorylation levels of protein kinase B (Akt308 , P < 0.01; Akt473 , P < 0.05) and anabolic-related proteins (the mammalian target of rapamycin, P < 0.01) and increased levels of catabolism-related proteins (muscle RING-finger protein-1, P < 0.01; MAFbx1, P < 0.01) in CTSK+/+ mice (n = 3). Although there was no difference in LLC tumour growth (n = 10, P = 0.44), CTSK deletion mitigated the IRS1 degradation, loss of the skeletal muscle mass (n = 10, P < 0.01), and dysfunction (n = 10, P < 0.01). In vitro, CTSK silencing prevented the IRS1 ubiquitination and loss of the myotube myosin heavy chain content (P < 0.01) induced by LCM, and these changes were accelerated by CTSK overexpression even without LCM. Immunoprecipitation showed that CTSK selectively acted on IRS1 in the region of amino acids 268 to 574. The results of co-transfection of IRS1-N-FLAG or IRS1-C-FLAG with CTSK suggested that CTSK selectively cleaves IRS1 and causes ubiquitination-related degradation of IRS1. CONCLUSIONS: These results demonstrate that CTSK plays a novel role in IRS1 ubiquitination in LLC-induced muscle wasting, and suggest that CTSK could be an effective therapeutic target for cancer-related cachexia.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Catepsina K , Proteínas Substratos do Receptor de Insulina , Animais , Caquexia/genética , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/patologia , Catepsina K/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Masculino , Camundongos , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Ubiquitinação
9.
Stem Cells Int ; 2020: 6938620, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32676120

RESUMO

BACKGROUND: Aging is a major risk factor for cardiovascular disease. Cysteine protease cathepsin K (CatK) has been implicated in the process of angiogenesis, but the exact roles of individual CatK in vessel formation during aging are poorly understood. METHODS AND RESULTS: To study the putative role of CatK in ischemia-induced angiogenesis, we applied a hindlimb ischemia model to aged wild-type (CatK+/+) and CatK-deficient (CatK-/-) mice. A serial laser Doppler blood-flow analysis revealed that the recovery of the ischemic/normal blood-flow ratio in the aged CatK-/-mice was impaired throughout the follow-up period. On postoperative day 14, CatK deficiency had also impaired capillary formation. CatK deficiency reduced the levels of cleaved Notch1, phospho-Akt, and/or vascular endothelial growth factor (VEGF) proteins in the ischemic muscles and bone marrow-derived c-Kit+ cells. A flow cytometry analysis revealed that CatK deficiency reduced the numbers of endothelial progenitor cell (EPC)-like CD31+/c-Kit+ cells in the peripheral blood as well as the ischemic vasculature. In vitro experiments, CatK-/- impaired bone-derived c-Kit+ cellular functions (migration, invasion, proliferation, and tubulogenesis) in aged mice. Our findings demonstrated that aging impaired the ischemia-induced angiogenesis associated with the reductions of the production and mobilization of CD31+/c-Kit+ cells in mice. CONCLUSIONS: These findings established that the impairment of ischemia-induced neovascularization in aged CatK-/- mice is due, at least in part, to the reduction of EPC mobilization and the homing of the cells into vasculature that is associated with the impairment of Notch1 signaling activation at advanced ages.

10.
J Hypertens ; 38(8): 1504-1513, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32205561

RESUMO

OBJECTIVE: Exposure to chronic psychosocial stress is a risk factor for metabolic cardiovascular disorders. Given that dipeptidyl peptidase-4 (DPP-4) has an important role in human pathobiology, we investigated the role of DPP-4 in stress-related thrombosis in mice, focusing on oxidative stress and the von Willebrand factor (vWF)-cleaving protease ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 motif, member 13). METHODS AND RESULTS: Male mice randomly assigned to nonstress and 2-week immobilized-stress groups underwent iron chloride3 (FeCl3)-induced carotid artery thrombosis surgery for morphological and biochemical studies at specific times. On day 14 post-stress/surgery, stress had enhanced the lengths and weights of arterial thrombi, with alterations of plasma DPP-4, plasminogen activation inhibitor-1 and ADAMTS13. The stressed mice had increased levels of vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1, gp91phox, p22phox, matrix metalloproteinase-2 (MMP-2), MMP-9, cathepsins S and K mRNAs and/or proteins, and reduced levels of endothelial nitric oxide synthase, catalase and superoxide dismutase-1 mRNAs and/or proteins. Stress also accelerated arterial endothelial cell damage. The DPP-4 inhibitor anagliptin ameliorated the stress-induced targeted molecular and morphological changes and thrombosis. In vitro, DPP-4 inhibition also mitigated the alterations in the targeted ADAMTS13 and other oxidative and inflammatory molecules in human umbilical vein endothelial cells in response to H2O2. CONCLUSION: DPP-4 inhibition appeared to improve the FeCl3-induced thrombosis in mice that received stress, possibly via the improvement of ADAMTS13 and oxidative stress, suggesting that DPP-4 could become a novel therapeutic target for chronic psychological stress-related thrombotic events in metabolic cardiovascular disorders.


Assuntos
Artérias Carótidas/fisiopatologia , Trombose das Artérias Carótidas/fisiopatologia , Dipeptidil Peptidase 4/metabolismo , Estresse Psicológico/fisiopatologia , Animais , Dipeptidil Peptidase 4/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Estresse Oxidativo/fisiologia
11.
Chem Biol Interact ; 314: 108842, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586451

RESUMO

BACKGROUND AND AIMS: Chronic psychosocial stress is a risk factor for cardiovascular disease. In view of the important role of dipeptidyl peptidase-4 (DPP-4) in human pathophysiology, we studied the role of DPP-4 in stress-related vascular aging in mice, focusing on oxidative stress and the inflammatory response. METHODS AND RESULTS: Male mice were randomly divided into a non-stress group and an immobilization stress group treated for 2 weeks. Chronic stress accelerates aortic senescence and increases plasma DPP-4 levels. Stress increased the levels of gp91phox, p22phox, p47phox, p67phox, p53, p27, p21, p16INK4A, vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1, matrix metalloproteinase-2 (MMP-2), MMP-9, cathepsin S (Cat S), and Cat K mRNAs and/or protein in the aorta of the stressed mice and decreased their levels of endothelial nitric oxide synthase and SirTuin1 (SirT1). DPP-4 inhibitors can improve stress-induced targeting molecules and morphological changes. In vitro, the inhibition of DPP-4 also alleviated the changes in the oxidative and inflammatory molecules in response to hydrogen peroxide in human umbilical vein endothelial cells. CONCLUSIONS: DPP-4 inhibition can improve vascular aging in stressed mice, possibly by improving oxidative stress production and vascular inflammation. Our results suggest that DPP-4 may become a new therapeutic target for chronic stress-related vascular aging in metabolic cardiovascular diseases.


Assuntos
Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Aorta/metabolismo , Aorta/patologia , Dipeptidil Peptidase 4/sangue , Dipeptidil Peptidase 4/química , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Pirimidinas/farmacologia , Sirtuína 1/metabolismo , Estresse Fisiológico
12.
Neuroreport ; 28(15): 973-979, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28877104

RESUMO

Long-term potentiation (LTP) is widely accepted as the best studied model for neurophysiological mechanisms that could underlie learning and memory formation. Despite a number of studies indicating that ß-adrenoceptors in the hippocampal dentate gyrus (DG) is involved in the modulation of learning and memory as well as LTP, few studies have used glutamate release as a visual indicator in awake animals to explore the role of ß-adrenoceptors in learning-dependent LTP. Therefore, in the present study, the effects of propranolol (an antagonist of ß-adrenoceptor) and isoproterenol (an agonist of ß-adrenoceptor) on extracellular concentrations of glutamate and amplitudes of field excitatory postsynaptic potential were measured in the DG region during active avoidance learning in freely moving conscious rats. In the control group, the glutamate level in the DG was significantly increased during the acquisition of active avoidance behavior and returned to basal level following extinction training. In propranolol group, antagonism of ß-adrenoceptors in the DG significantly reduced the change in glutamate level, and the acquisition of the active avoidance behavior was significantly inhibited. In contrast, the change in glutamate level was significantly enhanced by isoproterenol, and the acquisition of the active avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in glutamate level were accompanied by corresponding changes in field excitatory postsynaptic potential amplitude and active avoidance behavior. Our results suggest that activation of ß-adrenoceptors in the hippocampal DG facilitates active avoidance learning by modulations of glutamate level and synaptic efficiency in rats.


Assuntos
Aprendizagem da Esquiva/fisiologia , Giro Denteado/metabolismo , Ácido Glutâmico/metabolismo , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Cateteres de Demora , Giro Denteado/efeitos dos fármacos , Eletrodos Implantados , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Espaço Extracelular/metabolismo , Isoproterenol/farmacologia , Masculino , Propranolol/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...