Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(26): e2311203, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38233210

RESUMO

Designing a cost-effective and multifunctional separator that ensures dendrite-free and stable Zn metal anode remains a significant challenge. Herein, a multifunctional cellulose-based separator is presented consisting of industrial waste-fly ash particles and cellulose nanofiber using a facile solution-coating method. The resulting fly ash-cellulose (FACNF) separators enable a high ion conductivity (5.76 mS cm-1) and low desolvation energy barrier of hydrated Zn2+. These features facilitate fast ion transfer kinetics and inhibit water-induced side reactions. Furthermore, experimental results and theoretical simulations confirm that the presence of fly ash particles in FACNF separators effectively accommodate the preferential deposition of Zn(002) planes, due to the weak chemical affinity between Zn(002) plane and fly ash, to mitigate dendrite formation and growth. Consequently, the utilization of FACNF separators causes an impressive cycling performance in both Zn||Zn symmetric cells (1600 h at 2 mA cm-2/1 mAh cm-2) and Zn||(NH4)2V10O25 (NVO) full cells (4000 cycles with the capacity retention of 92.1% at 5 A g-1). Furthermore, the assembled pouch cells can steadily support digital thermometer over two months without generating gas and volume expansion. This work provides new insights for achieving crystallographic uniformity in Zn anodes and realizing cost-effective and long-lasting aqueous zinc-ion batteries (AZIBs).

2.
ACS Appl Mater Interfaces ; 15(38): 45045-45054, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37708461

RESUMO

The zinc dendrites and side reactions formed on the zinc anode have greatly hindered the development of aqueous zinc-ion batteries (ZIBs). Herein, we introduce tannic acid (TA) as an additive in the ZnSO4 (ZSO) electrolyte to enhance the reversible Zn plating/stripping behavior. TA molecules are found to adsorb onto the zinc surface, forming a passivation layer and replacing some of the H2O molecules in the Zn2+ solvation sheath to form the [Zn(H2O)6-xTAx]2+ complex; this process effectively prevents side reactions. Moreover, the lower desolvation energy barrier of the [Zn(H2O)6-xTAx]2+ structure facilitates uniform Zn metal deposition and enables a stable plating/stripping lifespan of 2500 h with low voltage hysteresis (53 mV at 0.5 mA cm-2) as compared to the ZSO electrolyte (167 h and 104 mV). Additionally, the incorporation of the MnO2 cathode in the TA + ZSO electrolyte shows improved cycling capacity retention, from 64% (ZSO) to 85% (TA + ZSO), after 250 cycles at 1 A g-1, demonstrating the effectiveness of the TA additive in enhancing the performance of ZIBs.

3.
ACS Appl Mater Interfaces ; 14(6): 7909-7916, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35103464

RESUMO

Aqueous zinc ion batteries (ZIBs) are emerging as a promising candidate in the post-lithium ion battery era, while the limited choice of cathode materials plagues their further development, especially the tunnel-type cathode materials with high electrochemical performance. Here, a tunnel-type vanadium-based compound based on hydrogen vanadium bronze (HxV2O5) microspheres has been fabricated and employed as the cathode for fast Zn2+ ions' intercalation/deintercalation, which delivers an excellent capacity (425 mAh g-1 at 0.1 A g-1), a remarkable cyclability (91.3% after 5000 cycles at 20 A g-1), and a sufficient energy density (311.5 Wh kg-1). As revealed by the experimental and theoretical results, such excellent electrochemical performance is confirmed to result from the fast ions/electrons diffusion kinetics promoted by the unique tunnel structure (3.7 × 4.22 Å2, along the c direction), which accomplishes a low Zn2+ ion diffusion barrier and the superior electron-transfer capability of HxV2O5. These results shed light on designing tunnel-type vanadium-based compounds to boost the prosperous development of Zn2+ ion storage cathodes.

4.
ACS Appl Mater Interfaces ; 13(32): 38416-38424, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34342444

RESUMO

Aqueous zinc-ion batteries (ZIBs) with cost-effective and safe features are highly competitive in grid energy storage applications, but plagued by the sluggish Zn2+ diffusion kinetics and poor cyclability of cathodes. Herein, a one-stone-two-birds strategy of La3+ incorporation (La-V2O5) is developed to motivate Zn2+ insertion/extraction kinetics and stabilize vanadium species for V2O5. Theoretical and experimental studies reveal the incorporated La3+ ions in V2O5 can not only serve as pillars to expand the interlayer distance (11.77 Å) and lower the Zn2+ migration energy barrier (0.82 eV) but also offer intermediated level and narrower band gap (0.54 eV), thus accelerating the electron/ion diffusion kinetics. Importantly, the steadily doped La3+ ions effectively stabilize the V-O bonds by shortening the bond length, thereby inhibiting vanadium species dissolution. Therefore, the resulting La-V2O5-ZIBs deliver an exceptional rate capacity of 405 mA h g-1 (0.1 A g-1), long-term stability with 93.8% retention after 5000 cycles (10 A g-1), and extraordinary energy density of 289.3 W h kg-1, outperforming various metal-ions-doped V2O5 cathodes. Moreover, the La-V2O5 pouch cell presents excellent electrochemical performance and impressive flexibility and integration ability. The strategies of incorporating rare-earth-metal ions provide guidance to other well-established aqueous ZIBs cathodes and other advanced electrochemical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...