Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(24): 9328-9338, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35666261

RESUMO

Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been demonstrated to be promising templates for the growth of various kinds of nanomaterials on their surfaces to construct novel 2D composites, thus realizing enhanced performance in various applications. Herein, we report the growth of Cu2O nanoparticles on 2D Zr-ferrocene (Zr-Fc)-MOF (Zr-Fc-MOF) nanosheets to prepare 2D composites for near-infrared (NIR) photothermally enhanced chemodynamic antibacterial therapy. The uniform Zr-Fc-MOF nanosheets are synthesized using the solvothermal method, followed by ultrasound sonication, and Cu2O nanoparticles are then deposited on its surface to obtain the Cu2O-decorated Zr-Fc-MOF (denoted as Cu2O/Zr-Fc-MOF) 2D composite. Promisingly, the Cu2O/Zr-Fc-MOF composite shows higher chemodynamic activity for producing ·OH via Fenton-like reaction than that of the pristine Zr-Fc-MOF nanosheets. More importantly, the chemodynamic activity of the Cu2O/Zr-Fc-MOF composite can be further enhanced by the photothermal effect though NIR laser (808 nm) irradiation. Thus, the Cu2O/Zr-Fc-MOF composite can be used as an efficient nanoagent for photothermally enhanced chemodynamic antibacterial therapy.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanoestruturas , Antibacterianos/farmacologia , Estruturas Metalorgânicas/farmacologia , Metalocenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...