Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1116, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321072

RESUMO

Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.6 N/m. By further constructing a nanoscale rough configuration of the polyurethane (RPU), the binding strength of Au-RPU device increases to 1243.4 N/m, which is 100 and 4 times higher than that of conventional polydimethylsiloxane and styrene-ethylene-butylene-styrene-based devices, respectively. The stretchable Au-RPU device can remain good electrical conductivity after 1022 frictions at 130 kPa pressure, and reliably record high-fidelity electrophysiological signals. Furthermore, an anti-friction pressure sensor array is constructed based on Au-RPU interconnect wires, demonstrating a superior mechanical durability for concentrated large pressure acquisition. This chemical modification-free approach of interfacial strengthening for chemically inert metal-based stretchable electronics is promising for three-dimensional integration and on-chip interconnection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...