Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 271(39): 24138-43, 1996 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-8798653

RESUMO

Escherichia coli MutY protein cleaves A/G- or a/7,8-dihydro-8-oxo-guanine (A/GO)-containing DNA on the A-strand by N-glycosylase and apurinic/apyrimidinic endonuclease or lyase activities. In this paper, we show that MutY can be trapped in a stable covalent enzyme-DNA intermediate in the presence of sodium borohydride, a new finding that supports the grouping of MutY in that class of DNA glycosylases that possess concomitant apurinic/apyrimidinic lyase activity. To potentially help determine the substrate recognition site of MutY, mutant proteins were constructed. MutY proteins with a Gly116 --> Ala (G116A) or Asp (G116D) mutation had reduced binding affinities for both A/G- and A/GO-containing DNA substrates. The catalytic parameters, however, were differentially affected. While A/G- and A/GO-containing DNA were cleaved by MutY with specificity constants (kcat/Km) of 10 and 3.3 min-1 microM-1, respectively, MutY(G116D) cleaved these DNAs 2, 300- and 9-fold less efficiently. The catalytic activities of MutY(G116A) with A/G- and A/GO-containing DNA were about the same as that of wild-type MutY. Both MutY(G116A) and MutY(G116D) could be trapped in covalent intermediates with A/GO-containing DNA, but with lower efficiencies than the wild-type enzyme in the presence of sodium borohydride. MutY(G116A) also formed a covalent intermediate with A/G-containing DNA, but MutY(G116D) did not. Since Gly116 of MutY lies in a region that is highly conserved among several DNA glycosylases, it is likely this conserved region is in the proximity of the substrate binding and/or catalytic sites.


Assuntos
DNA Glicosilases , Reparo do DNA , Escherichia coli/genética , N-Glicosil Hidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Catálise , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/enzimologia , Cinética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...