Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 10(3): 678-691, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34940764

RESUMO

Despite the essential roles of natural killer (NK) cells in cancer treatment, the physical barrier and biological cues of the tumor microenvironment (TME) may induce NK cell dysfunction, causing their poor infiltration into tumors. The currently available two-dimensional (2D) cancer-NK co-culture systems hardly represent the characteristics of TME and are not suitable for tracking the infiltration of immune cells and assessing the efficacy of immunotherapy. This study aims to monitor NK-mediated cancer cell killing using a polymer thin film-based, 3D assay platform that contains highly tumorigenic cancer spheroids. A poly(cyclohexyl methacrylate) (pCHMA)-coated surface enables the generation of tumorigenic spheroids from pancreatic cancer patient-derived cancer cells, showing considerable amounts of extracellular matrix (ECM) proteins and cancer stem cell (CSC)-like characteristics. The 3D spheroid-based assay platform allows rapid discovery of a therapeutic agent for synergistic NK-mediated cytotoxicity through imaging-based high-content screening. In detail, the small molecule C19, known as a multi-epithelial-mesenchymal transition pathway inhibitor, is shown to enhance NK activation and infiltration via modulation of the ECM, resulting in synergistic cytotoxicity against cancer spheroids. This 3D biomimetic co-culture assay platform provides promising applications for predicting patient-specific responses to immunotherapy through advanced therapeutic combinations involving a chemical drug and immune cells.


Assuntos
Neoplasias , Microambiente Tumoral , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Imunoterapia , Células Matadoras Naturais , Neoplasias/tratamento farmacológico
2.
Sci Rep ; 7: 41744, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134325

RESUMO

Basophils are rare, circulating granulocytes proposed to be involved in T helper (TH) type 2 immunity, mainly through secretion of interleukin (IL)-4. In addition to IL-4, basophils produce IL-6 and tumor necrosis factor (TNF)-α in response to immunoglobulin E (IgE) crosslinking. Differentiation of TH17 cells requires IL-6 and transforming growth factor (TGF)-ß, but whether basophils play a significant role in TH17 induction is unknown. Here we show a role for basophils in TH17 cell development by using in vitro T cell differentiation and in vivo TH17-mediated inflammation models. Bone marrow derived-basophils (BMBs) and splenic basophils produce significant amounts of IL-6 as well as IL-4 following stimulation with IgE crosslink or cholera toxin (CT). In addition, through IL-6 secretion, BMBs cooperate with dendritic cells to promote TH17 cell differentiation. In the TH17 lung inflammation model, basophils are recruited to the inflamed lungs following CT challenge, and TH17 responses are significantly reduced in the absence of basophils or IL-6. Furthermore, reconstitution with wild-type, but not IL-6-deficient, basophils restored CT-mediated lung inflammation. Lastly, basophil-deficient mice showed reduced phenotypes of TH17-dependent experimental autoimmune encephalomyelitis. Therefore, our results indicate that basophils are an important inducer of TH17 cell differentiation, which is dependent on IL-6 secretion.


Assuntos
Basófilos/imunologia , Basófilos/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/imunologia , Interleucina-6/metabolismo , Células Th17/citologia , Células Th17/fisiologia , Animais , Biomarcadores , Toxina da Cólera/efeitos adversos , Citocinas/biossíntese , Modelos Animais de Doenças , Imunidade , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/deficiência , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...