Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 26(13): 135707, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25765817

RESUMO

The relation between surface structure and friction and adhesion is a long-standing question in tribology. Tuning the surface structure of the exposed facets of metal nanoparticles is enabled by shape control. We investigated the effect of the shape of Au nanoparticles on friction and adhesion. Two nanoparticle systems, cubic nanoparticles with a low-index (100) surface and hexoctahedral nanoparticles with a high-index (321) surface, were used as model nanoparticle surfaces. Atomic force microscopy was used to probe the nanoscale friction and adhesion on the nanoparticle surface. Before removing the capping layers, the friction results include contributions from both the geometric factor and the presence of capping layers. After removing the capping layers, we can see the exclusive effect of the surface atomic structure while the geometric effect is maintained. We found that after removing the capping layer, the cubic Au nanoparticles exhibited higher adhesion and friction, compared with cubes capped with layers covering 25% and 70%, respectively. On the other hand, the adhesion and friction of hexoctahedral Au nanoparticles decreased after removing the capping layers, compared with nanoparticles with capping layers. The difference in adhesion and friction forces between the bare Au surfaces and Au nanoparticles with capping layers cannot be explained by geometric factors, such as the slope of the nanoparticle surfaces. The higher adhesion and friction forces on cubic nanoparticles after removing the capping layers is associated with the atomic structure of (100) and (321) (i.e., the flat (100) surfaces of the cubic nanoparticles have a larger contact area, compared with the rough (321) surfaces of the hexoctahedral nanoparticles). This study implies an intrinsic relation between atomic structure and nanomechanical properties, with potential applications for controlling nanoscale friction and adhesion via colloid chemistry.

2.
ACS Nano ; 9(3): 2773-82, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25688838

RESUMO

We have investigated the effects of a directly nanopatterned active layer on the electrical and optical properties of inverted polymer solar cells (i-PSCs). The capillary force in confined molds plays a critical role in polymer crystallization and phase separation of the film. The nanoimprinting process induced improved crystallization and multidimensional chain alignment of polymers for more effective charge transfer and a fine phase-separation between polymers and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) to favor exciton dissociation and increase the generation rate of charge transfer excitons. Consequently, the power conversion efficiency with a periodic nanostructure was enhanced from 7.40% to 8.50% and 7.17% to 9.15% in PTB7 and PTB7-Th based i-PSCs, respectively.

3.
Faraday Discuss ; 162: 355-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015594

RESUMO

We report the hot carrier-driven catalytic activity of two-dimensional arrays of Pt nanoparticles on GaN substrate under light irradiation. In order to elucidate the effect of a hot carrier in a catalytic chemical reaction, the CO oxidation reaction was carried out on Pt nanoparticles on p- and n-type GaN under light irradiation. Metal catalysts composed of Pt nanoparticles were prepared using two different preparation methods: the one-pot polyol reduction and are plasma deposition methods. Under light irradiation, the catalytic activity of the Pt nanoparticles supported on GaN exhibited a distinct change depending on the doping type. The catalytic activity of the Pt nanoparticles on the n-doped GaN wafer decreased by 8-28% under light irradiation, compared to no irradiation (i.e., in the dark), while the Pt nanoparticles on the p-doped GaN wafer increased by 11-33% under light irradiation, compared to no irradiation. The catalytic activity increased on the smaller Pt nanoparticles, compared to the larger nanoparticles, presumably due to the mean free path of hot carriers. Based on these results, we conclude that the flow of hot carriers generated at the Pt-GaN interface during light irradiation is responsible for the change in catalytic activity on the Pt nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...