Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-495422

RESUMO

Secretory immunoglobulin A (IgA) plays a crucial role in the mucosal immunity for preventing the invasion of the exogenous antigens, however, little has been understood about the neutralizing activity of serum IgA. Here, to examine the role of IgA antibodies against COVID-19 illnesses, we determined the neutralizing activity of serum/plasma IgG and IgA purified from previously SARS-CoV-2-infected and COVID-19 mRNA-vaccine-receiving individuals. We found that serum/plasma IgA possesses substantial but rather modest neutralizing activity against SARS-CoV-2 compared to IgG with no significant correlation with the disease severity. Neutralizing IgA and IgG antibodies achieved the greatest activity at approximately 25 and 35 days after symptom onset, respectively. However, neutralizing IgA activity quickly diminished and went down below the detection limit approximately 70 days after onset, while substantial IgG activity was observed till 200 days after onset. The total neutralizing activity in sera/plasmas of those with COVID-19 largely correlated with that in purified-IgG and purified-IgA and levels of anti-SARS-CoV-2-S1-binding IgG and anti-SARS-CoV-2-S1-binding IgA. In individuals who were previously infected with SARS-CoV-2 but had no detectable neutralizing IgA activity, a single dose of BNT162b2 or mRNA-1273 elicited potent serum/plasma neutralizing IgA activity but the second dose did not further strengthen the neutralization antibody response. The present data show that the systemic immune stimulation with natural infection and COVID-19 mRNA-vaccines elicit both SARS-CoV-2-specific neutralizing IgG and IgA response in serum, but the IgA response is modest and diminishes faster compared to IgG response. Author SummaryImmunoglobulin A (IgA) is the most abundant type of antibody in the body mostly located on mucosal surfaces as a dimeric secretory IgA. Such secretory IgA plays an important role in preventing the adherence and invasions of foreign objects by its neutralizing activity, while monomeric serum IgA is thought to relate to the phagocytic immune system activation. Here, we report that individuals with the novel coronavirus disease (COVID-19) developed both systemic neutralizing IgG and IgA active against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the neutralizing IgA response was quick and reached the highest activity 25 days post-symptom-onset, compared to 35 days for IgG response, neutralizing IgA activity was modest and diminished faster than neutralizing IgG response. In individuals, who recovered from COVID-19 but had no detectable neutralizing IgA activity, a single dose of COVID-19 mRNA-vaccine elicited potent neutralizing IgA activity but the second dose did not further strengthen the antibody response. Our study provides novel insights into the role and the kinetics of serum IgA against the viral pathogen both in naturally-infected and COVID-19 mRNA-vaccine-receiving COVID-19-convalescent individuals.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21261237

RESUMO

BackgroundWhile mRNA vaccines against SARS-CoV-2 have been exceedingly effective in preventing symptomatic viral infection, the features of immune response remain to be clarified. MethodsIn the present prospective observational study, 225 healthy individuals in Kumamoto General Hospital, Japan, who received two BNT162b2 doses in February 2021, were enrolled. Correlates of BNT162b2-elicited SARS-CoV-2-neutralizing activity (50% neutralization titer: NT50; assessed using infectious virions and live target cells) with SARS-CoV-2-S1-binding-IgG and -IgM levels, adverse effects (AEs), ages, and genders were examined. The average half-life of neutralizing activity and the average time length for the loss of detectable neutralizing activity were determined and the potency of serums against variants of concerns was also determined. FindingsSignificant rise in NT50s was seen in serums on day 28 post-1st dose. A moderate inverse correlation was seen between NT50s and ages, but no correlation was seen between NT50s and AEs. NT50s and IgG levels on day 28 post-1st dose and pain scores following the 2nd shot were greater in women than in men. The average half-life of neutralizing activity in the vaccinees was approximately 67.8 days and the average time length for their serums to lose the detectable neutralizing activity was 198.3 days. While serums from elite-responders (NT50s>1,500-fold: the top 4% among all participants NT50s) potently to moderately blocked the infectivity of variants of concerns, some serums with moderate NT50s failed to block the infectivity of a beta strain. InterpretationBNT162b2-elicited immune response has no significant association with AEs. BNT162b2-efficacy is likely diminished to under detection limit by 6-7 months post-1st shot. High-level neutralizing antibody-containing serums potently to moderately block the infection of SARS-CoV-2 variants; however, a few moderate-level neutralizing antibody-containing serums failed to do so. If BNT162b2-elicited immunity memory is short, an additional vaccine or other protective measures would be needed. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSWhile mRNA vaccines against SARS-CoV-2 have been exceedingly effective in preventing symptomatic viral infection, the salient features of immune response including the persistence of protection remain to be clarified. There is a report that anti-SARS-CoV-2 antibodies persist through 6 months after the second dose of mRNA-1273 vaccine (Doria-Rose et al. N Engl J Med. 2021;384:2259-2261); however, more definite immune kinetics following mRNA-vaccine-elicited protection have to be clarified. The mRNA-vaccine-elicited protection against SARS-CoV-2 variants are also to be determined. Added value of this studyIn the present prospective study, 225 twice-BNT162b2-dose-receiving individuals in Japan were enrolled. No significant correlation was seen between 50% neutralizing titers (NT50s), determined by using infectious SARS-CoV-2 virions and live target cells, and adverse effects. Largely, NT50s and IgG levels were greater in women than in men. Following 28 days post-2nd shot, significant reduction was seen in NT50s, IgG, and IgM levels. The average half-life of NT50s was [~]68 days and the average time-length for participants serums to lose the detectable activity was [~]198 days. Although serums from elite-responders potently to moderately blocked the infectivity of variants of concerns, some serums with moderate NT50s failed to block the infectivity of a beta strain. Implications of all the available evidenceBNT162b2 efficacy is likely to be diminished to under detection limit by 6-7 months post-1st shot on average. Individuals with moderate NT50s may fail to block beta variants. If BNT162b2-elicited immune memory is lost soon, additional vaccine(s) or other protective means would be needed.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253183

RESUMO

ObjectivesAlthough several randomised controlled trials have compared the efficacy of remdesivir with that of placebo, there is limited evidence regarding its effect in the early stage of nonsevere COVID-19 cases. MethodsWe evaluated the efficacy of remdesivir on the early stage of nonsevere COVID-19 using the COVID-19 Registry Japan, a nationwide registry of hospitalised COVID-19 patients in Japan. Two regimens (start remdesivir therapy within 4 days from admission vs. no remdesivir during hospitalisation) among patients without the need for supplementary oxygen therapy were compared by a three-step processing (cloning, censoring, and weighting) method. The primary outcome was supplementary oxygen requirement during hospitalisation. Secondary outcomes were 30-day fatality risk and risk of invasive mechanical ventilation or extracorporeal membrane oxygenation (IMV/ECMO). ResultsThe data of 12,657 cases met our inclusion criteria. The start remdesivir regimen showed a lower risk of supplementary oxygen requirement (hazard ratio: 0.861, p < 0.001). Both 30-day fatality risk and risk of IMV/ECMO introduction were not significantly different between the two regimens (hazard ratios: 1.05 and 0.886, p values: 0.070 and 0.440, respectively). ConclusionsRemdesivir might reduce the risk of oxygen requirement during hospitalisation in the early stage of COVID-19; however, it had no positive effect on the clinical outcome and reduction of IMV/ECMO requirement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...