Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(43): 29137-29148, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34746602

RESUMO

Semiconductor Cu2ZnSn(S x Se1-x )4 (CZTSSe) solid solution is considered as a perspective absorber material for solar cells. However, during its synthesis or deposition, any modification in the resulting optical properties is hardly predicted. In this study, experimental and theoretical analyses of CZTSSe bulk crystals and thin films are presented based on Raman scattering and absorption spectroscopies together with compositional and morphological characterizations. CZTSSe bulk and thin films are studied upon a change in the x = S/(S + Se) aspect ratio. The morphological study is focused on surface visualization of the solid solutions, depending on x variation. It has been discovered for the first time that the surface of the bulk CZTSSe crystal with x = 0.35 has pyramid-like structures. The information obtained from the elemental analysis helps to consider the formation of a set of possible intrinsic lattice defects, including vacancies, self-interstitials, antisites, and defect complexes. Due to these results and the experimentally obtained values of the band gap within 1.0-1.37 eV, a deviation from the calculated band gap values is estimated in the range of 1.0-1.5 eV. It is suggested which defects can have an influence on such a band gap change. Also, on comparing the experimental Raman spectra of CZTSSe with the theoretical modeling results, an excellent agreement is obtained for the main Raman bands. The proposed theoretical approach allows to estimate the values of concentration of atoms (S or Se) for CZTSSe solid solution directly from the experimental Raman spectra. Thus, the visualization of morphology and the proposed theoretical approach at various x values will help for a deeper understanding of the CZTSSe structure to develop next-generation solar cells.

2.
Polymers (Basel) ; 13(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641174

RESUMO

Multilayered graphene nanoplatelets (MLGs) were prepared from thermally expanded graphite flakes using an electrochemical technique. Morphological characterization of MLGs was performed using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Raman spectroscopy (RS), and the Brunauer-Emmett-Teller (BET) method. DGEBA-epoxy-based nanocomposites filled with synthesized MLGs were studied using Static Mechanical Loading (SML), Thermal Desorption Mass Spectroscopy (TDMS), Broad-Band Dielectric Spectroscopy (BDS), and Positron Annihilation Lifetime Spectroscopy (PALS). The mass loading of the MLGs in the nanocomposites was varied between 0.0, 0.1, 0.2, 0.5, and 1% in the case of the SML study and 0.0, 1.0, 2, and 5% for the other measurements. Enhancements in the compression strength and the Young's modulus were obtained at extremely low loadings (C≤ 0.01%). An essential increase in thermal stability and a decrease in destruction activation energy were observed at C≤ 5%. Both the dielectric permittivity (ε1) and the dielectric loss factor (ε2) increased with increasing C over the entire frequency region tested (4 Hz-8 MHz). Increased ε2 is correlated with decreased free volume when increasing C. Physical mechanisms of MLG-epoxy interactions underlying the effects observed are discussed.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 219: 488-495, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31077952

RESUMO

We present an optical arrangement for spectroscopy of enhanced Raman scattering assisted by surface plasmon resonance in continuous planar metallic films. Optical excitation of propagating surface plasmons (PSP) is aided by the hemispherical total internal reflectance prism in the Kretschmann geometry. In this geometry, the radiation produced by Raman scattering is directionally emitted inside the prism with the angular distribution in the shape of a hollow cone (the Kretschmann cone). The proposed configuration enables entire collection of the Kretschmann cone with the use of an elliptical mirror modified for enlarging the accessible angular range for both the incident beam and the scattered light. The spectroscopic performance of this arrangement was evaluated using the Rhodamine 6G dye as a surface enhanced Raman scattering (SERS) reporter. An evident difference in magnitudes of the enhancement factor for specific spectral lines as compared to SERS excitation by localized surface plasmon resonance (LSPR-SERS) was revealed. The origin of this difference is discussed in terms of expected distinctions between the PSP-assisted directional enhanced Raman scattering and the LSPR-SERS. Besides the spectroscopic applications, the proposed arrangement is also perfectly suited for simultaneous functioning as the SPR sensor. Integration of SERS spectroscopy with the SPR analysis shows promise as a platform for evolving an innovative analytical technique with enhanced potentialities in surface research, particularly in biochemical applications.

4.
Appl Opt ; 55(12): B158-62, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140123

RESUMO

Cu-Sn-S (CTS) thin films were deposited onto bare and molybdenum (Mo) coated glass substrates by means of the spray pyrolysis technique under different conditions. The CTS thin films obtained are shown, by means of Raman spectroscopy, to consist of two main phases: Cu2SnS3 and Cu3SnS4 as well as of the secondary phase of Cu2-xS. The electrical conductivity of the spray-deposited p-type CTS thin films under investigation is determined by two shallow acceptor levels: Ev+0.07 eV at T<334 K and Ev+0.1 eV at T>334 K. The material of the CTS thin films was established to be a direct-band semiconductor with the bandgap Eg=1.89 eV. The SEM and x-ray energy dispersive analysis show the surface and cross section of the CTS thin film deposited onto molybdenum-coated glass ceramics substrate with the actual atomic ratios of Cu:Sn:S being 2.9:1:2.64, which is in good agreement with the Raman spectra. Also, a small content of residual Cl atoms was found in the CTS thin films under investigation as the by-product of the pyrolytic reactions.

5.
Nanoscale Res Lett ; 11(1): 103, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26909783

RESUMO

An application of scanning Auger microscopy with ion etching technique and effective compensation of thermal drift of the surface analyzed area is proposed for direct local study of composition distribution in the bulk of single nanoislands. For GexSi1 - x-nanoislands obtained by MBE of Ge on Si-substrate gigantic interdiffusion mixing takes place both in the open and capped nanostructures. Lateral distributions of the elemental composition as well as concentration-depth profiles were recorded. 3D distribution of the elemental composition in the d-cluster bulk was obtained using the interpolation approach by lateral composition distributions in its several cross sections and concentration-depth profile. It was shown that there is a germanium core in the nanoislands of both nanostructure types, which even penetrates the substrate. In studied nanostructures maximal Ge content in the nanoislands may reach about 40 at.%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA