Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 674: 1-51, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008004

RESUMO

Carotenoid excited singlet states, in particular, are typically very short lived. Therefore, time-resolved absorption spectroscopy in the time regime from femtoseconds to sub-milliseconds are required to unravel and understand the complicated relaxation and excitation energy-transfer pathways of carotenoids in solution and in photosynthetic pigment-protein complexes. The focus of this chapter is to explain how to use ultrafast time-resolved absorption spectroscopy in carotenoid research. The importance of a systematic approach to understanding the various carotenoid excited states by using a series of carotenoids with different conjugation lengths and the isomers of carotenoids is also emphasized.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética , Carotenoides/metabolismo , Lasers , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Análise Espectral/métodos
2.
Commun Chem ; 5(1): 135, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36697849

RESUMO

In bacterial photosynthesis, the excitation energy transfer (EET) from carotenoids to bacteriochlorophyll a has a significant impact on the overall efficiency of the primary photosynthetic process. This efficiency can be enhanced when the involved carotenoid has intramolecular charge-transfer (ICT) character, as found in light-harvesting systems of marine alga and diatoms. Here, we provide insights into the significance of ICT excited states following the incorporation of a higher plant carotenoid, ß-apo-8'-carotenal, into the carotenoidless light-harvesting 1 (LH1) complex of the purple photosynthetic bacterium Rhodospirillum rubrum strain G9+. ß-apo-8'-carotenal generates the ICT excited state in the reconstituted LH1 complex, achieving an efficiency of EET of up to 79%, which exceeds that found in the wild-type LH1 complex.

3.
J R Soc Interface ; 15(141)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29643225

RESUMO

Carotenoids are essential light-harvesting pigments in natural photosynthesis. They absorb in the blue-green region of the solar spectrum and transfer the absorbed energy to (bacterio-)chlorophylls, and thus expand the wavelength range of light that is able to drive photosynthesis. This process is an example of singlet-singlet excitation energy transfer, and carotenoids serve to enhance the overall efficiency of photosynthetic light reactions. The photochemistry and photophysics of carotenoids have often been interpreted by referring to those of simple polyene molecules that do not possess any functional groups. However, this may not always be wise because carotenoids usually have a number of functional groups that induce the variety of photochemical behaviours in them. These differences can also make the interpretation of the singlet excited states of carotenoids very complicated. In this article, we review the properties of the singlet excited states of carotenoids with the aim of producing as coherent a picture as possible of what is currently known and what needs to be learned.


Assuntos
Carotenoides/química , Fotossíntese/fisiologia , Carotenoides/fisiologia , Clorofila/química , Clorofila/fisiologia , Transferência de Energia , Modelos Biológicos , Modelos Moleculares
4.
Faraday Discuss ; 198: 59-71, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28294216

RESUMO

Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (∼95%) energy-transfer from fucoxanthin to chlorophyll a in the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium, Rhodospirillum rubrum G9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyll a when they are bound to the light-harvesting 1 apo-proteins.


Assuntos
Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Xantofilas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Rhodospirillum rubrum/enzimologia , Xantofilas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...