Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 361: 127731, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35934246

RESUMO

The effect of sudden augmentation with fish waste (FW) on an operating anaerobic digester was investigated. Fifteen repeated FW spikes (FWS) composed of 1% or 5% FW per working volume of digester were suddenly fed into semi-continuous operation of a mixture of sludge and food waste. Overall process efficiency was not inhibited by FW augmentation. The bacterial community were clustered differently in the 5% FWS treatment than in the control and 1% FWS. Protein-degrading bacteria (Porphyromonadacea, Family XI, and Family XII) were commonly found in the 5% FWS treatment. Their proportions positively correlated with numbers of other bacteria and dominant methanogens (Methanosaeta and Methanospirillum), showing their important role in FWS digestion. FWS caused a shift of bacteria community, but an increase in archaeal concentration. Therefore, sudden addition of an appropriate amount of FW to existing digesters did not provoke process failure. This result contributes an ecologically-benign method to process FW.


Assuntos
Eliminação de Resíduos , Esgotos , Anaerobiose , Animais , Bactérias , Reatores Biológicos/microbiologia , Digestão , Alimentos , Metano
2.
Bioresour Technol ; 349: 126834, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35149182

RESUMO

Initial microbial compositions would be the precursor for the efficient anaerobic digestion (AD) of fish waste (FW). A mesophilic batch test was conducted using four seeds collected from different digesters treating various combinations of substrates to investigate their effects on FW degradation. Key microbial groups were identified by 16s rRNA gene-based metagenomics analysis. Among four, the seed from the digester co-digesting livestock manure, food waste, and food wastewater showed the best performance and obtained the highest methane yield (350.5 ± 5.2 mL/gVSadded) and lowest lag phase (0.6 ± 0.1 d). Proteiniphilum, Aminobacterium, dgA-11 gut group, and Syntrophomonas were dominant bacterial genera identified in FW degradation. Methanosaeta was the dominant methanogen in the best performing seed and microbial network analysis revealed its contribution to achieving the highest CH4 yield. Obtained results could be useful in selecting microbial seed sources to avoid system imbalance in full-scale digesters that treat FW.


Assuntos
Reatores Biológicos , Eliminação de Resíduos , Anaerobiose , Animais , Reatores Biológicos/microbiologia , Alimentos , Metano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Esgotos
3.
Bioresour Technol ; 306: 123178, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32203902

RESUMO

This research investigated the process efficiency and microbial communities and their diversity in a full-scale wastewater treatment plant (WWTP) fed with petroleum refining wastewater (PRW) that contained toxic hydrocarbon contaminants and carcinogens. Process parameters and bacterial community structures were monitored for six months to create a link between microbial dynamics and influent characteristics of petrochemical wastewater. The WWTP showed a stable process with efficiencies >70% for both soluble chemical oxygen demand (SCOD) and benzene removal. More than 30 genera were identified by metagenomic analysis, and the bacterial populations changed significantly during the operation period. Among them, genera Sulfuritalea (11.9 ± 3.5%), Ottowia (4.3 ± 2.2%), Thauera (3.1 ± 7.2%) and Hyphomicrobium (1.3 ± 0.7%) were dominant and important bacterial genera that may have been responsible for the degradation of aromatic compounds such as benzene and phenol.

4.
J Environ Manage ; 241: 418-426, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31035235

RESUMO

Anaerobic batch tests with a 22 full-factorial design of ammonia (1.5, 6.5 g N/L) and magnetite concentrations (0, 20 mmol/L) were conducted separately for methanogenic degradation of acetate, propionate, and butyrate (volatile fatty acids (VFAs)) to 1) quantify the effect of magnetite as an enhancer in methanogenic degradation of each of the VFAs in conditions without ammonia stress (1.5 g N/L) and with ammonia stress (6.5 g N/L), and 2) identify methanogenic consortia that are related to such enhancement. Among the three VFAs, methanogenic degradation of propionate was the least feasible (57% lower specific methanogenic activity RCH4 and three times longer lag time λ than acetate degradation). At low ammonia concentration, only propionate showed improvement in RCH4 (46%) with supplementation of magnetite. In the ammonia-stressed condition without magnetite, RCH4 decreased by 38-58% and λ increased 2.2-8.8 times for all VFAs; magnetite supplementation significantly alleviated these effects. These results demonstrate that magnetite supplementation effectively increases methanogenic degradation of the VFAs even under ammonia-stressed conditions. 16S metagenomic sequencing revealed that distinctive methanogenic consortia were active in the different combinations of substrate, ammonia and magnetite. Alkaliphilus, Hyphomonadaceae SWB02 and Clostridia DTU014, Clostridia D8A-2, Christensenellaceae R-7 group and Rikenellaceae DMER64 were identified as potential syntrophic bacteria that can establish magnetite-mediated direct electron transfer with methanogens (Methanosaeta concilii, Methanosaeta harundinacea, Methanolinea tarda, Methanoculleus bourgensis and Methanosarcina spp.) during methanogenic degradation of VFAs. The results may be useful as a reference to develop effective strategies using magnetite supplementation to remediate anaerobic digestion processes that have been afflicted by VFA accumulation and ammonia inhibition.


Assuntos
Amônia , Óxido Ferroso-Férrico , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Metano
5.
Bioresour Technol ; 282: 439-446, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889535

RESUMO

Five mesophilic full-scale anaerobic digesters treating food waste (FW-digester), animal waste (AW-digester), and co-substrate of food waste and animal waste (CO-digesters) were monitored identify bacterial and archaeal communities and to quantify the effect of substrate characteristics on them, and to identify 'core' microorganism. The substrate characteristics and microbial communities of the FW-digester, AW-digester, and CO-digesters were statistically different. Organic concentration and [Na+] were identified as major variations that effect microbial community. Methanogen community was more diverse in AW-digester than in FW-digester. Methanogen community in CO-digester was as diverse as in AW-digester, and the most dominant species was Methanoculleus bourgensis same as in FW-digester. Twenty-one bacterial genera and four methanogen species were found in all digesters as a consequence of their metabolic versatility to degrade organic and inhibitor compounds. The results implied that these core microorganisms may contribute to maintaining a stable microbial ecosystem.


Assuntos
Alimentos , Microbiota , Anaerobiose , Animais , Esterco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...