Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-453160

RESUMO

SARS-CoV-2 infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID19, the disease caused by SARS-CoV-2, T cell responses are important in mediating recovery and immune-protection. The identification of immunogenic epitopes that can elicit a meaningful T cell response can be elusive. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes; however, our previous studies find that immunodominant SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing SARS-CoV-2. We postulated that immunogenic epitopes for SARS-CoV-2 are best defined by directly analyzing peptides eluted from the peptide-MHC complex and then validating immunogenicity empirically by determining if such peptides can elicit T cells recognizing SARS-CoV-2 antigen-expressing cells. Using a tandem mass spectrometry approach, we identified epitopes of SARS-CoV-2 derived not only from structural but also non-structural genes in regions highly conserved among SARS-CoV-2 strains including recently recognized variants. We report here, for the first time, several novel SARS-CoV-2 epitopes from membrane glycol-protein (MGP) and non-structure protein-13 (NSP13) defined by mass-spectrometric analysis of MHC-eluted peptides, provide empiric evidence for their immunogenicity to induce T cell response. Significance StatementCurrent state of the art uses putative epitope peptides based on in silico prediction algorithms to evaluate the T cell response among COVID-19 patients. However, none of these peptides have been tested for immunogenicity, i.e. the ability to elicit a T cell response capable of recognizing endogenously presented peptide. In this study, we used MHC immune-precipitation, acid elution and tandem mass spectrometry to define the SARS-CoV-2 immunopeptidome for membrane glycol-protein and the non-structural protein. Furthermore, taking advantage of a highly robust endogenous T cell (ETC) workflow, we verify the immunogenicity of these MS-defined peptides by in vitro generation of MGP and NSP13 peptide-specific T cells and confirm T cell recognition of MGP or NSP13 endogenously expressing cell lines.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451555

RESUMO

SARS-CoV-2 infections elicit both humoral and cellular immune responses. For the prevention and treatment of COVID19, the disease caused by SARS-CoV-2, it has become increasingly apparent that T cell responses are equally, if not more important than humoral responses in mediating recovery and immune-protection. One of the major challenges in developing T cell-based therapies for infectious and malignant diseases has been the identification of immunogenic epitopes that can elicit a meaningful T cell response. Traditionally, this has been achieved using sophisticated in silico methods to predict putative epitopes deduced from binding affinities and consensus data. Our studies find that, in contrast to current dogma, immunodominant SARS-CoV-2 peptides defined by such in silico methods often fail to elicit T cell responses recognizing naturally presented SARS-CoV-2 epitopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...