Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 243: 114009, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030682

RESUMO

Microplastics are ubiquitous in soil ecosystems all over the world through source and migration. It is even estimated that the content of microplastics in terrestrial ecosystems exceeds the number of microplastics entering sea ecosystems. However, compared with the research on microplastics in marine ecosystems, the research and discussion on microplastics in soil ecosystems are still less. Transportation, film mulching and sewage sludge are three main sources of soil microplastics. The abundance, polymer type, size and shape of the microplastics are related to the source and they help to clarify the source. The characteristics of microplastics, farming measures, soil animal activities and other factors promote the migration of microplastics, which bring new challenges to the soil ecosystems and humans. This article summarizes the latest research findings on the effects of soil microplasticity on soil properties, plants, animals and microorganisms. The analysis methods of microplastics in soil can refer to the analysis methods of microplastics of aquatic sediments, because soil and aquatic sediments are similar, both of which are complex solid substrates. At present, the development of analytical methods is limited due to the complex matrix of soil and the small volume of microplastics, which requires continuous development and innovation. Through the summary and analysis of related articles, this article reviews the distribution, sources, migration, influence and analysis methods of soil microplastics. This article also critically analyzes the deficiencies in the studies of microplastics in the soil ecosystems, and made some suggestions for future work. The microplastics in soil ecosystems need further research and summary, which will help people further understand the potential hazards of microplastics.


Assuntos
Microplásticos , Solo , Ecossistema , Monitoramento Ambiental , Humanos , Plásticos , Esgotos
2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-952903

RESUMO

Since December, 2019, an outbreak of pneumonia caused by the new coronavirus (2019-nCoV) has hit the city of Wuhan in the Hubei Province. With the continuous development of the epidemic, it has become a national public health crisis and calls for urgent antiviral treatments or vaccines. The spike protein on the coronavirus envelope is critical for host cell infection and virus vitality. Previous studies showed that 2019-nCoV is highly homologous to human SARS-CoV and attaches host cells though the binding of the spike receptor binding domain (RBD) domain to the angiotensin-converting enzyme II (ACE2). However, the molecular mechanisms of 2019-nCoV binding to human ACE2 and evolution of 2019-nCoV remain unclear. In this study, we have extensively studied the RBD-ACE2 complex, spike protein, and free RBD systems of 2019-nCoV and SARS-CoV using protein-protein docking and molecular dynamics (MD) simulations. It was shown that the RBD-ACE2 binding free energy for 2019-nCoV is significantly lower than that for SARS-CoV, which is consistent with the fact that 2019-nCoV is much more infectious than SARS-CoV. In addition, the spike protein of 2019-nCoV shows a significantly lower free energy than that of SARS-CoV, suggesting that 2019-nCoV is more stable and able to survive a higher temperature than SARS-CoV. This may also provide insights into the evolution of 2019-nCoV because SARS-like coronaviruses are thought to have originated in bats that are known to have a higher body-temperature than humans. It was also revealed that the RBD of 2019-nCoV is much more flexible especially near the binding site and thus will have a higher entropy penalty upon binding ACE2, compared to the RBD of SARS-CoV. That means that 2019-nCoV will be much more temperature-sensitive in terms of human infection than SARS-CoV. With the rising temperature, 2019-nCoV is expected to decrease its infection ability much faster than SARS-CoV, and get controlled more easily. The present findings are expected to be helpful for the disease prevention and control as well as drug and vaccine development of 2019-nCoV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...