Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 29(46): 465703, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30168799

RESUMO

Recently, DNA molecules embedded with magnetite (Fe3O4) nanoparticles (MNPs) drew much attention for their wide range of potential usage. With specific intrinsic properties such as low optical loss, high transparency, large band gap, high dielectric constant, potential for molecular recognition, and their biodegradable nature, the DNA molecule can serve as an effective template or scaffold for various functionalized nanomaterials. With the aid of cetyltrimethylammonium (CTMA) surfactant, DNA can be used in organic-based applications as well as water-based ones. Here, DNA and CTMA-DNA thin films with various concentrations of MNPs fabricated by the drop-casting method have been characterized by optical absorption, refractive index, Raman, and cathodoluminescence measurements to understand the binding, dispersion, chemical identification/functional modes, and energy transfer mechanisms, respectively. In addition, magnetization was measured as a function of either applied magnetic field or temperature in field cooling and zero field cooling. Saturation magnetization and blocking temperature demonstrate the importance of MNPs in DNA and CTMA-DNA thin films. Finally, we examine the thermal stabilities of MNP-embedded DNA and CTMA-DNA thin films through thermogravimetric analysis, derivative thermogravimetry, and differential thermal analysis. The unique optical, magnetic, and thermal characteristics of MNP-embedded DNA and CTMA-DNA thin films will prove important to fields such as spintronics, biomedicine, and function-embedded sensors and devices.


Assuntos
Compostos de Cetrimônio/química , DNA/química , Nanopartículas de Magnetita/química , Cetrimônio , Medições Luminescentes , Campos Magnéticos , Nanopartículas de Magnetita/análise , Gases em Plasma/química , Refratometria , Espectrofotometria Ultravioleta , Análise Espectral Raman , Temperatura , Termogravimetria
2.
Colloids Surf B Biointerfaces ; 167: 197-205, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29655046

RESUMO

DNA is one of the most propitious biomaterials for use in nanoscience and nanotechnology because of its exceptional characteristics, i.e. self-assembly and sequence-programmability. In this study, we fabricate sequence-designed double-crossover (DX) DNA lattices and naturally available salmon DNA (SDNA) thin films modified with the transition metal ion Mn2+. Phase transition of DX DNA lattices from crystalline to amorphous form controlled by varying the concentration of Mn2+ is discussed and a critical transition concentration ([Mn2+]C) is estimated. In addition, the electrical, optical, and magnetic properties of Mn2+-modified SDNA thin films including current, absorbance, photoluminescence, the X-ray photoelectron spectrum, and magnetization are studied to understand their conductivity, binding modes, energy transfer characteristics, chemical composition, and magnetism. Interestingly, the physical values such as the maximum current and photoluminescence, and the minimum absorbance, occur at around [Mn2+]C =4 mM, which may be due to the optimal incorporation of Mn2+ into the SDNA. The magnetization and susceptibility of SDNA thin films with Mn2+, served as magnetic dipoles, are studied under different temperature and magnetic field. The magnetization of SDNA thin films with [Mn2+]C shows an S-shaped curve, indicating ferromagnetism.


Assuntos
DNA/química , Manganês/química , Eletricidade , Campos Magnéticos , Rotação Ocular , Tamanho da Partícula , Propriedades de Superfície
3.
Nanoscale Res Lett ; 9(1): 4, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24386884

RESUMO

In a flexible nanocomposite-based nanogenerator, in which piezoelectric nanostructures are mixed with polymers, important parameters to increase the output power include using long nanowires with high piezoelectricity and decreasing the dielectric constant of the nanocomposite. Here, we report on piezoelectric power generation from a lead-free LiNbO3 nanowire-based nanocomposite. Through ion exchange of ultra-long Na2Nb2O6-H2O nanowires, we synthesized long (approximately 50 µm in length) single-crystalline LiNbO3 nanowires having a high piezoelectric coefficient (d33 approximately 25 pmV-1). By blending LiNbO3 nanowires with poly(dimethylsiloxane) (PDMS) polymer (volume ratio 1:100), we fabricated a flexible nanocomposite nanogenerator having a low dielectric constant (approximately 2.7). The nanogenerator generated stable electric power, even under excessive strain conditions (approximately 105 cycles). The different piezoelectric coefficients of d33 and d31 for LiNbO3 may have resulted in generated voltage and current for the e33 geometry that were 20 and 100 times larger than those for the e31 geometry, respectively. This study suggests the importance of the blending ratio and strain geometry for higher output-power generation in a piezoelectric nanocomposite-based nanogenerator. PACS: 77.65.-j; 77.84.-s; 73.21.Hb.

4.
Nanotechnology ; 23(37): 375401, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22922486

RESUMO

In spite of high piezoelectricity, only a few one-dimensional ferroelectric nano-materials with perovskite structure have been used for piezoelectric nanogenerator applications. In this paper, we report high output electrical signals, i.e. an open-circuit voltage of 3.2 V and a closed-circuit current of 67.5 nA (current density 9.3 nA cm(-2)) at 0.38% strain and 15.2% s(-1) strain rate, using randomly aligned lead-free KNbO(3) ferroelectric nanorods (~1 µm length) with piezoelectric coefficient (d(33) ~ 55 pm V (-1)). A flexible piezoelectric nanogenerator is mainly composed of KNbO(3)-poly(dimethylsiloxane) (PDMS) composite sandwiched by Au/Cr-coated polymer substrates. We deposit a thin poly(methyl methacrylate) (PMMA) layer between the KNbO(3)-PDMS composite and the Au/Cr electrode to completely prevent dielectric breakdown during electrical poling and to significantly reduce leakage current during excessive straining. The flexible KNbO(3)-PDMS composite device shows a nearly frequency-independent dielectric constant (~3.2) and low dielectric loss (<0.006) for the frequency range of 10(2)-10(5) Hz. These results imply that short and randomly aligned ferroelectric nanorods can be used for a flexible high output nanogenerator as well as high-k capacitor applications by performing electrical poling and further optimizing the device structure.

5.
Adv Mater ; 24(39): 5357-62, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22837044

RESUMO

Pyroelectric nanogenerators fabricated using a lead-free KNbO(3) nanowire-PDMS polymer composite are reported for the first time. The voltage/current output of the nanogenerators can be controlled by electric fields and enhanced by increasing the rate of change in temperature. The fabricated nanogenerators can be used to harvest energy from sunlight illumination and have potential applications in self-powered nanodevices and nanosystems.


Assuntos
Eletricidade , Nanotecnologia/métodos , Nanofios/química , Nióbio/química , Óxidos/química , Potássio/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...