Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene Ther ; 25(1): 54-65, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28925992

RESUMO

Current treatments of hepatocellular carcinoma (HCC) are ineffective and unsatisfactory in many aspects. Cancer-targeting gene virotherapy using oncolytic adenoviruses (OAds) armed with anticancer genes has shown efficacy and safety in clinical trials. Nowadays, both inhibitor of growth 4 (ING4), as a multimodal tumor suppressor gene, and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), as a potent apoptosis-inducing gene, are experiencing a renaissance in cancer gene therapy. Herein we investigated the antitumor activity and safety of mono- and combined therapy with OAds armed with ING4 (Ad-ΔB/ING4) and TRAIL (Ad-ΔB/TRAIL) gene, respectively, on preclinical models of human HCC. OAd-mediated expression of ING4 or TRAIL transgene was confirmed. Ad-ΔB/TRAIL and/or Ad-ΔB/ING4 exhibited potent killing effect on human HCC cells (HuH7 and Hep3B) but not on normal liver cells. Most importantly, systemic therapy with Ad-ΔB/ING4 plus Ad-ΔB/TRAIL elicited more eradicative effect on an orthotopic mouse model of human HCC than their monotherapy, without causing obvious overlapping toxicity. Mechanistically, Ad-ΔB/ING4 and Ad-ΔB/TRAIL were remarkably cooperated to induce antitumor apoptosis and immune response, and to repress tumor angiogenesis. This is the first study showing that concomitant therapy with Ad-ΔB/ING4 and Ad-ΔB/TRAIL may provide a potential strategy for HCC therapy and merits further investigations to realize its possible clinical translation.


Assuntos
Carcinoma Hepatocelular/terapia , Proteínas de Ciclo Celular/genética , Terapia Genética , Proteínas de Homeodomínio/genética , Neoplasias Hepáticas/terapia , Terapia Viral Oncolítica , Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteínas Supressoras de Tumor/genética , Animais , Apoptose , Carcinoma Hepatocelular/irrigação sanguínea , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Efeito Citopatogênico Viral , Humanos , Neoplasias Hepáticas/irrigação sanguínea , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Neovascularização Patológica/prevenção & controle , Transfecção , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Oncogene ; 35(28): 3718-28, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-26568304

RESUMO

The multifunctional enzyme transglutaminase 2 (TG2) primarily catalyzes cross-linking reactions of proteins via (γ-glutamyl) lysine bonds. Several recent findings indicate that altered regulation of intracellular TG2 levels affects renal cancer. Elevated TG2 expression is observed in renal cancer. However, the molecular mechanism underlying TG2 degradation is not completely understood. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase. Previous studies reveal that CHIP deficiency mice displayed a reduced life span with accelerated aging in kidney tissues. Here we show that CHIP promotes polyubiquitination of TG2 and its subsequent proteasomal degradation. In addition, TG2 upregulation contributes to enhanced kidney tumorigenesis. Furthermore, CHIP-mediated TG2 downregulation is critical for the suppression of kidney tumor growth and angiogenesis. Notably, our findings are further supported by decreased CHIP expression in human renal cancer tissues and renal cancer cells. The present work reveals that CHIP-mediated TG2 ubiquitination and proteasomal degradation represent a novel regulatory mechanism that controls intracellular TG2 levels. Alterations in this pathway result in TG2 hyperexpression and consequently contribute to renal cancer.


Assuntos
Carcinoma de Células Renais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Renais/metabolismo , Neovascularização Patológica/metabolismo , Transglutaminases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/genética , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Immunoblotting , Imuno-Histoquímica , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Proteólise , Transglutaminases/genética , Transplante Heterólogo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
3.
Gene Ther ; 21(5): 476-83, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24598892

RESUMO

Oncolytic adenoviruses (Ad) have been developed for the eradication of tumors. Although they hold much promise as a cancer therapy, they have a short blood circulation time and high liver toxicity. An effective strategy to overcome these problems has been complexing Ad with shielding materials. However, the therapeutic efficacy of the Ad complexes has also been an issue because passive accumulation does not allow for sufficient delivery of Ad to the cancer cells. To enhance the therapeutic efficacy of the polymer-coated Ads, the attachment of a targeting moiety to polymer-coated Ad vectors is inescapable. Our lab has previously reported the potential use of Arg-Gly-Asp (RGD)-targeted bioreducible polymers with a polyethylene glycol (PEG) linker for delivering oncolytic Ads. We have shown the enhanced in vitro transduction efficiency and increased cancer-killing effect with producing progeny oncolytic Ad particles. In addition, we have shown significant tumor-growth inhibition of the polymer-shielded Ad in an in vivo lung orthotopic tumor model. The shielding effect of the Ad surface with the polymers allowed evasion of host immune responses and reduction of liver toxicity. This data demonstrates that the RGD-conjugated bioreducible polymer for delivering the oncolytic Ad vectors could be utilized for cancer therapy via systemic administration.


Assuntos
Adenocarcinoma/terapia , Fibrossarcoma/terapia , Neoplasias Pulmonares/terapia , Oligopeptídeos/farmacologia , Terapia Viral Oncolítica/métodos , Adenocarcinoma de Pulmão , Adenoviridae/química , Linhagem Celular Tumoral , Células HEK293 , Humanos , Fígado/lesões , Fígado/virologia , Oligopeptídeos/química , Vírus Oncolíticos/química , Polietilenoglicóis , Polímeros/química , Polímeros/farmacologia , Interferência de RNA , RNA Interferente Pequeno
4.
Cell Death Dis ; 5: e1112, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24625971

RESUMO

Although curcumin suppresses the growth of a variety of cancer cells, its poor absorption and low systemic bioavailability have limited its translation into clinics as an anticancer agent. In this study, we show that dimethoxycurcumin (DMC), a methylated, more stable analog of curcumin, is significantly more potent than curcumin in inducing cell death and reducing the clonogenicity of malignant breast cancer cells. Furthermore, DMC reduces the tumor growth of xenografted MDA-MB 435S cells more strongly than curcumin. We found that DMC induces paraptosis accompanied by excessive dilation of mitochondria and the endoplasmic reticulum (ER); this is similar to curcumin, but a much lower concentration of DMC is required to induce this process. DMC inhibits the proteasomal activity more strongly than curcumin, possibly causing severe ER stress and contributing to the observed dilation. DMC treatment upregulates the protein levels of CCAAT-enhancer-binding protein homologous protein (CHOP) and Noxa, and the small interfering RNA-mediated suppression of CHOP, but not Noxa, markedly attenuates DMC-induced ER dilation and cell death. Interestingly, DMC does not affect the viability, proteasomal activity or CHOP protein levels of human mammary epithelial cells, suggesting that DMC effectively induces paraptosis selectively in breast cancer cells, while sparing normal cells. Taken together, these results suggest that DMC triggers a stronger proteasome inhibition and higher induction of CHOP compared with curcumin, giving it more potent anticancer effects on malignant breast cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Curcumina/análogos & derivados , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Fator de Transcrição CHOP/metabolismo , Animais , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Relação Dose-Resposta a Droga , Feminino , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , Fatores de Tempo , Fator de Transcrição CHOP/genética , Transfecção , Carga Tumoral/efeitos dos fármacos , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Gene Ther ; 21(1): 106-14, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24225639

RESUMO

For successful clinical tumor immunotherapy outcomes, strong immune responses against tumor antigens must be generated. Cell-based vaccines compromise one strategy with which to induce appropriate strong immune responses. Previously, we established a natural killer T-cell (NKT) ligand-loaded, adenoviral vector-transduced B-cell-based anticancer cellular vaccine. To enhance tumor antigen delivery to B cells, we established a modified adenoviral vector (Ad-k35) that encoded a truncated form of the breast cancer antigen Her2/neu (Ad-k35HM) in which fiber structure was substituted with adenovirus serotype 35. We observed increased tumor antigen expression with Ad-k35HM in both human and murine B cells. In addition, an Ad-k35HM-transduced B-cell vaccine elicited strong antigen-specific cellular and humoral immune responses that were further enhanced with the additional loading of soluble NKT ligand KBC009. An Ad-k35HM-transduced, KBC009-loaded B-cell vaccine efficiently suppressed the in vivo growth of established tumors in a mouse model. Moreover, the vaccine elicited human leukocyte antigen (HLA)-A2 epitope-specific cytotoxic T-cell responses in B6.Cg (CB)-Tg (HLA-A/H2-D) 2Enge/Jat mice. These findings indicated that the Ad-k35 could be appropriate for the preclinical and clinical development of B-cell-based anticancer immunotherapies.


Assuntos
Linfócitos B/imunologia , Vacinas Anticâncer , Dependovirus/genética , Neoplasias Mamárias Experimentais/terapia , Receptor ErbB-2/genética , Animais , Linfócitos B/virologia , Vacinas Anticâncer/imunologia , Células Cultivadas , Dependovirus/metabolismo , Feminino , Vetores Genéticos , Antígeno HLA-A2/imunologia , Humanos , Imunoterapia , Neoplasias Mamárias Experimentais/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Células T Matadoras Naturais/imunologia , Receptor ErbB-2/metabolismo , Linfócitos T Citotóxicos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Gene Ther ; 20(9): 880-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23514707

RESUMO

Adenoviruses (Ad) have been investigated for their efficacy in reducing primary tumors after local intratumoral administration. Despite high Ad concentrations and repetitive administration, the therapeutic efficacy of Ad has been limited because of rapid dissemination of the Ad into the surrounding normal tissues and short maintenance of Ad biological activity in vivo. To maximize the therapeutic potential of Ad-mediated gene therapeutics, we investigated the efficacy of local, sustained Ad delivery, using an injectable alginate gel matrix system. The biological activity of Ad loaded in alginate gel was prolonged compared with naked Ad, as evidenced by the high green fluorescent protein gene transduction efficiency over an extended time period. Moreover, oncolytic Ad encapsulated in alginate gel elicited 1.9- to 2.4-fold greater antitumor activity than naked Ad in both C33A and U343 human tumor xenograft models. Histological and quantitative PCR analysis confirmed that the oncolytic Ad/alginate gel matrix system significantly increased preferential replication and dissemination of oncolytic Ad in a larger area of tumor tissue in vivo. Taken together, these results show that local sustained delivery of oncolytic Ad in alginate gel augments therapeutic effect through selective infection of tumor cells, sustained release and prolonged maintenance of Ad activity.


Assuntos
Adenoviridae/genética , Adenoviridae/fisiologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Alginatos , Animais , Linhagem Celular Tumoral , Terapia Genética , Ácido Glucurônico , Ácidos Hexurônicos , Humanos , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Vírus Oncolíticos/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Gene Ther ; 20(2): 70-6, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23306610

RESUMO

Recurrent or metastatic cancer in most cases remains an incurable disease, and thus alternative treatment strategies, such as oncolytic virotherapy, are of great interest for clinical application. Oncolytic adenoviruses (Ads) have many advantages as virotherapeutic agents and have been safely employed in the clinics. However, the efficacy of oncolytic Ads is insufficient to eradicate tumors and current clinical applications are restricted to local administration against primary tumors because of immunological obstacles and poor tumor-cell targeting. Thus, alternative viable approaches are needed to establish therapies based on oncolytic Ad that will eliminate both primary and metastatic cancers. To this end, rational design of oncolytic Ads that express immunostimulatory genes has been employed. Even when restricted to local viral delivery, these oncolytic Ad-based immunotherapeutics have been shown to exert systemic antitumor immunity and result in eradication of both primary and metastatic cancers. Moreover, oncolytic Ad-based immunotherapeutics in combination with either dendritic cell-based vaccine or radiotherapy further strengthen the systemic tumor-specific immunity, resulting in complete suppression of both local and distant tumor metastatic growth. This review will focus on the most recent updates in strategies to develop potent oncolytic Ad-based immunotherapeutics for use in cancer gene therapy.


Assuntos
Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae/genética , Vacinas Anticâncer/uso terapêutico , Células Dendríticas/imunologia , Humanos , Imunoterapia , Metástase Neoplásica/imunologia , Neoplasias/imunologia , Neoplasias/patologia , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cancer Gene Ther ; 19(11): 741-8, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23018622

RESUMO

The development of effective treatments that enable many patients suffering from cancer to be successfully cured is highly demanded. Angiogenesis, which is a process for the formation of new capillary blood vessels, has a crucial role in solid tumor progression and the development of metastasis. Antiangiogenic therapy designed to prevent tumor angiogenesis, thereby arresting the growth or spread of tumors, has emerged as a non-invasive and safe option for cancer treatment. Due to the fact that integrin receptors are overexpressed on the surface of angiogenic endothelial cells, various strategies have been made to develop targeted delivery systems for cancer gene therapy utilizing integrin-targeting peptides with an exposed arginine-glycine-aspartate (RGD) sequence. The aim of this review is to summarize the progress and prospect of RGD-functionalized nonviral vectors toward targeted delivery of genetic materials in order to achieve an efficient therapeutic outcome for cancer gene therapy, including antiangiogenic therapy.


Assuntos
Regulação Neoplásica da Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/metabolismo , Neoplasias/terapia , Neovascularização Patológica/terapia , Oligopeptídeos/administração & dosagem , Sequência de Aminoácidos , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/uso terapêutico , Animais , Endotélio/metabolismo , Endotélio/patologia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Oligopeptídeos/uso terapêutico , Peptídeos Cíclicos/administração & dosagem , Peptídeos Cíclicos/uso terapêutico , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico
9.
Gene Ther ; 19(7): 711-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21993173

RESUMO

Interleukin (IL)-12 and granulocyte-monocyte colony-stimulating factor (GM-CSF) have recently been used as immunotherapeutic agents in cancer gene therapy. IL-12 and GM-CSF have differential roles in the antitumor immune response, as IL-12 targets T, NK and natural killer T (NKT) cells and GM-CSF principally targets antigen-presenting cells (APCs). To strengthen the therapeutic efficacy of these two cytokines, we generated an oncolytic adenovirus (Ad), Ad-ΔB7/IL12/GMCSF, coexpressing IL-12 and GM-CSF. Using a murine B16-F10 syngeneic tumor model, we show that Ad-ΔB7/IL12/GMCSF promoted antitumor responses and increased survival compared with an oncolytic Ad expressing IL-12 or GM-CSF alone (Ad-ΔB7/IL12 or Ad-ΔB7/GMCSF, respectively). By measuring cytotoxic T lymphocyte activity and interferon-γ production, we show that the enhanced therapeutic effect was mediated by the induction of immune cell cytotoxicity. In situ delivery of Ad-ΔB7/IL12/GMCSF resulted in massive infiltration of CD4(+) T cells, CD8(+) T cells, NK cells and CD86(+) APCs into the tissue surrounding the necrotic area of the tumor. Moreover, GM-CSF effectively promoted antitumor immune memory, which was significantly augmented by IL-12. Lastly, IL12-expressing oncolytic Ads prevented tumor-induced thymic atrophy and was associated with reduced apoptosis and increased proliferation in the thymus. Taken together, these data demonstrate that an oncolytic Ad coexpressing IL-12 and GM-CSF is a potential therapeutic tool for the treatment of cancer.


Assuntos
Adenoviridae/genética , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Memória Imunológica , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Timo/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Interleucina-12/genética , Células Matadoras Naturais/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vírus Oncolíticos/genética , Linfócitos T Citotóxicos/imunologia , Timo/patologia
10.
Gene Ther ; 19(10): 967-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22033466

RESUMO

S100A2, a member of the S100 family of calcium-binding proteins, has been implicated in carcinogenesis as both a tumor suppressor and stimulator. Here, we characterized promoter activity of S100A2, generated an S100A2 promoter-driven conditionally replicative adenovirus (Ad/SA), and evaluated its anti-tumor activity in vitro and in vivo. Promoter activity of S100A2 was greatly restricted to tumor cells, and the S100A2 promoter bound with typical nuclear targets of epidermal growth factor receptor (EGFR) signaling. EGF-stimulated EGFR phosphorylation induced S100A2 expression and further activated E1A expression of Ad/SA, which was restored by EGFR signal inhibition in a concentration-dependent manner in non-small-cell lung carcinoma (NSCLC). In two EGFR-activated tumor xenograft animal models, Ad/SA exhibited potent anti-tumor activity, whereas cetuximab, an EGFR-targeting anticancer drug, was active transiently or ineffective. Combined treatment with cetuximab or cisplatin plus Ad/SA resulted in enhanced anti-tumor activity. Immunohistochemical analysis of tumor sections showed moderate-to-high grade signals for EGFR and adenovirus, and a reduction in viable cells in Ad/SA-treated tumors. Collectively, these results demonstrate that the S100A2 promoter-driven adenovirus is a potent inhibitor of cancers, and further suggest that S100A2 is a target gene of EGFR signaling pathway in NSCLC.


Assuntos
Adenoviridae/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Fatores Quimiotáticos/genética , Neoplasias Pulmonares/genética , Vírus Oncolíticos/genética , Regiões Promotoras Genéticas , Proteínas S100/genética , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linhagem Celular Tumoral , Cetuximab , Cisplatino/farmacologia , Receptores ErbB/efeitos dos fármacos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Expressão Gênica , Vetores Genéticos/genética , Humanos , Neoplasias Pulmonares/terapia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Terapia Viral Oncolítica , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Br J Dermatol ; 165(3): 673-7, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21623756

RESUMO

BACKGROUND: Keloids or hypertrophic scars are pathological proliferations of the dermal skin layer resulting from excessive collagen deposition. Because the hormone relaxin (RLX) inhibits collagen synthesis and expression in stimulated fibroblasts, an adenovirus expressing RLX (dE1-RGD/lacZ/RLX) was generated. OBJECTIVES: To investigate the effect of RLX-expressing adenovirus on expression of various extracellular matrix (ECM) components in primary keloid spheroids. METHODS: The expression levels of type I and III collagen, fibronectin and elastin were investigated by immunohistochemistry in primary keloid spheroids transduced with the RLX-expressing adenovirus. RESULTS: Immunohistochemical analysis showed that expression of major ECM components (e.g. type I and III collagen, elastin and fibronectin) was markedly reduced in primary keloid spheroids transduced with dE1-RGD/lacZ/RLX. CONCLUSIONS: These results suggest that the antifibrotic effect of RLX-expressing adenovirus may have therapeutic effects on keloids by reversing pathological fibrosis and preventing keloid recurrence after surgical excision.


Assuntos
Adenoviridae/genética , Colágeno Tipo III/metabolismo , Colágeno Tipo I/metabolismo , Terapia Genética/métodos , Queloide/terapia , Relaxina/genética , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Fibroblastos/metabolismo , Fibrose/prevenção & controle , Humanos , Imuno-Histoquímica , Queloide/metabolismo , Pessoa de Meia-Idade , Transdução Genética
12.
Gene Ther ; 18(9): 898-909, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21451575

RESUMO

The oncolytic adenovirus (Ad) is currently being advanced as a promising antitumor remedy as it selectively replicates in tumor cells and can transfer and amplify therapeutic genes. Interleukin (IL)-12 induces a potent antitumor effect by promoting natural killer (NK) cell and cytotoxic T cell activities. IL-18 also augments cytotoxicity of NK cells and proliferation of T cells. This effect further enhances the function of IL-12 in a synergistic manner. Therefore, we investigated for the first time an effective cancer immunogene therapy of syngeneic tumors via intratumoral administration of oncolytic Ad co-expressing IL-12 and IL-18, RdB/IL-12/IL-18. Intratumoral administration of RdB/IL-12/IL-18 improved antitumor effects, as well as increased survival, in B16-F10 murine melanoma model. The ratio of T-helper type 1/2 cytokine as well as the levels of IL-12, IL-18, interferon-γ and granulocyte-macrophage colony-stimulating factor was markedly elevated in RdB/IL-12/IL-18-treated tumors. Mice injected with RdB/IL-12/IL-18 also showed enhanced cytotoxicity of tumor-specific immune cells. Consistent with these results, immense necrosis and infiltration of NK cells, as well as CD4+ and CD8+ T cells, were observed in RdB/IL-12/IL-18-treated tumor tissues. Importantly, tumors treated with RdB/IL-12/IL-18 showed an elevated number of T cells expressing IL-12Rß2 or IL-18Rα. These results provide a new insight into therapeutic mechanisms of IL-12 plus IL-18 and provide a potential clinical cancer immunotherapeutic agent for improved antitumor immunity.


Assuntos
Terapia Genética/métodos , Interleucina-12/genética , Interleucina-18/genética , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Terapia Viral Oncolítica/métodos , Receptores de Interleucina-12/metabolismo , Receptores de Interleucina-18/metabolismo , Linfócitos T/imunologia , Adenoviridae/genética , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Interleucina-12/metabolismo , Interleucina-18/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vírus Oncolíticos
13.
Cell Death Differ ; 18(4): 589-601, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21052095

RESUMO

Collaborator of ARF (CARF) was cloned as an ARF-interacting protein and shown to regulate the p53-p21(WAF1)-HDM2 pathway, which is central to tumor suppression via senescence and apoptosis. We had previously reported that CARF inhibition in cancer cells led to polyploidy and caspase-dependent apoptosis, however, the mechanisms governing this phenomenon remained unknown. Thus, we examined various cell death and survival pathways including the mitochondrial stress, ataxia telangiectasia mutated (ATM)-ATR, Ras-MAP kinase and retinoblastoma cascades. We found that CARF is a pleiotropic regulator with widespread effects; its suppression affected all investigated pathways. Most remarkably, it protected the cells against genotoxicity; CARF knockdown elicited DNA damage response as evidenced by increased levels of phosphorylated ATM and γH2AX, leading to induction of mitotic arrest and eventual apoptosis. We also show that the CARF-silencing-induced apoptosis in vitro translates to in vivo. In a human tumor xenograft mouse model, treatment of developing tumors with short hairpin RNA (shRNA) against CARF via an adenovirus carrier induced complete suppression of tumor growth, suggesting that CARF shRNA is a strong candidate for an anticancer reagent. We demonstrate that CARF has a vital role in genome preservation and tumor suppression and CARF siRNA is an effective novel cancer therapeutic agent.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose , Neoplasias/terapia , Proteínas de Ligação a RNA/metabolismo , Animais , Antineoplásicos/uso terapêutico , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Camundongos Nus , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/uso terapêutico , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Transplante Heterólogo , Proteínas Supressoras de Tumor/metabolismo
14.
Gene Ther ; 17(2): 190-201, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19907500

RESUMO

The pressing challenge for contemporary gene therapy is to deliver enough therapeutic genes to enough cancer cells in vivo. With the aim of improving viral distribution and tumor penetration, we explored the use of decorin to enhance viral spreading and tumor tissue penetration. We generated decorin-expressing replication-incompetent (dl-LacZ-DCNG, dl-LacZ-DCNQ and dl-LacZ-DCNK) and replication-competent (Ad-DeltaE1B-DCNG, Ad-DeltaE1B-DCNQ and Ad-DeltaE1B-DCNK) adenoviruses (Ads). Point mutants of decorin gene (DCNG), DCNK and DCNQ, have a negative and moderate binding affinity to type-I collagen fibril, respectively. In both tumor spheroids and established solid tumors in vivo, tissue penetration potency of dl-LacZ-DCNG was greatly enhanced than those of dl-LacZ, dl-LacZ-DCNQ and dl-LacZ-DCNK, and this enhanced tissue penetration effect derived from decorin-expressing Ad was dependent on the binding affinity of decorin to collagen fibril. Expression of DCNG enhanced viral spread of replicating Ad, leading to improved tumor reduction and survival benefit. Moreover, the tumoricidal effects of Ad-DeltaE1B-DCNQ and Ad-DeltaE1B-DCNK were lessened, as the binding affinity to collagen was decreased, showing that the increased cancer cell cytotoxicity was driven by the action of decorin on extracellular matrix (ECM). Furthermore, Ad-DeltaE1B-DCNG substantially decreased ECM components within the tumor tissue. Finally, intratumoral injection of Ad-DeltaE1B-DCNG in primary tumor site greatly reduced the formation of B16BL6 melanoma cell pulmonary metastases in mice. Taken together, these data show the utility of decorin as a dispersion agent and highlight its utility and potential in improving the efficacy of replicating Ad-mediated cancer gene therapy.


Assuntos
Adenoviridae/genética , Proteínas da Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Terapia Viral Oncolítica/métodos , Proteoglicanas/genética , Animais , Linhagem Celular Tumoral , Decorina , Proteínas da Matriz Extracelular/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Camundongos , Camundongos Nus , Proteoglicanas/metabolismo , Esferoides Celulares/metabolismo , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Gene Ther ; 17(4): 235-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19798122

RESUMO

We were interested in developing oncolytic adenoviral vectors that can be administered systemically for the treatment of breast cancer. To restrict viral replication in breast tumor cells, we constructed mhTERTAd.sTbetaRFc, a 01/07-based adenoviral vector expressing the soluble form of transforming growth factor-beta (TGFbeta) receptor II fused with the human Fc IgG1 (sTGFbetaRIIFc) gene, in which viral replication is under the control of a modified human telomerase reverse transcriptase (mhTERT) promoter. In addition, mhTERTAd.sTbetaRFc-mediated sTGFbetaRIIFc production targets the TGFbeta pathway known to contribute to the tumor progression of breast cancer metastasis. We chose to use the mhTERT promoter because it was found to be relatively more active (approximately 20 times) in breast cancer cells compared with normal human cells. We showed that infection of MDA-MB-231 and MCF-7 breast cancer cells for 48 h with mhTERTAd.sTbetaRFc produced high levels of sTGFbetaRIIFc (greater than 1 microg ml(-1)) in the medium. Breast cancer cells produced nearly a 6000-fold increase in viral titers during the 48 h infection period. However, mhTERTAd.sTbetaRFc replication was attenuated in normal cells. Infection of breast cancer cells with a replication-deficient virus Ad(E1(-)).sTbetaRFc also produced high levels of sTGFbetaRIIFc, but under these conditions, no detectable viral replication was observed. Adenoviral-mediated production of sTGFbetaRIIFc was shown to bind with TGFbeta-1, and to abolish the effects of TGFbeta-1 on downstream SMAD-3 phosphorylation. The administration of mhTERTAd.sTbetaRFc intravenously into MDA-MB-231 human xenograft-bearing mice resulted in a significant inhibition of tumor growth and production of sTGFbetaRIIFc in the blood. Conversely, intravenous injection of Ad(E1(-)).sTbetaRFc did not show a significant inhibition of tumor growth, but resulted in sTGFbetaRIIFc in the blood, suggesting that viral replication along with sTGFbetaRIIFc protein production is critical in inducing the inhibition of tumor growth. These results warrant future investigation of mhTERTAd.sTbetaRFc as an antitumor agent in vivo.


Assuntos
Adenoviridae/fisiologia , Neoplasias da Mama/terapia , Terapia Viral Oncolítica , Regiões Promotoras Genéticas/genética , Telomerase/genética , Fator de Crescimento Transformador beta/antagonistas & inibidores , Replicação Viral , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/terapia , Infecções por Adenoviridae/virologia , Animais , Western Blotting , Neoplasias da Mama/genética , Neoplasias da Mama/virologia , Linhagem Celular Tumoral , Efeito Citopatogênico Viral , Ensaio de Imunoadsorção Enzimática , Feminino , Regulação Neoplásica da Expressão Gênica , Vetores Genéticos , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Camundongos , Camundongos Nus , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Gene Ther ; 16(9): 1111-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19494843

RESUMO

Radiation therapy, a mainstay for anti-tumor therapeutic regimens for a variety of tumor types, triggers tumor cell apoptotic pathways by either directly eliciting DNA damage or indirectly inducing the formation of oxygen radicals. In an effort to augment radiation therapy, we generated a double E1B 19 kDa- and E1B 55 kDa-deleted oncolytic adenovirus (Ad-DeltaE1B19/55). In combination with radiotherapy, greater cytotoxicity was observed for Ad-DeltaE1B19/55 than for the single E1B 55 kDa-deleted oncolytic Ad (Ad-DeltaE1B55). Consistent with this observation, higher levels of p53, phospho-p53, phospho-Chk1, phospho-Chk2, PI3K (phosphatidylinositol-3-kinase), phospho-AKT, cytochrome c, and cleavage of PARP (poly (ADP-ribose) polymerase) and caspase-3 were observed in cells treated with Ad-DeltaE1B19/55 compared with those treated with Ad-DeltaE1B55, indicating that the E1B 19 kDa present in Ad-DeltaE1B55 may partially block radiation-induced apoptosis. A significant therapeutic benefit was also observed in vivo when oncolytic Ads and radiation were combined. Tumors treated with Ad-DeltaE1B19/55 and radiation showed large areas of necrosis and apoptosis with the corresponding induction of p53. Finally, consistent with in vitro observations, the combination of Ad-DeltaE1B19/55 and radiation was more efficacious than the combination of Ad-DeltaE1B55 and radiation. Taken together, these results present a strong therapeutic rationale for combining radiation therapy with E1B 19 kDa-deleted oncolytic Ad.


Assuntos
Adenoviridae/genética , Proteínas E1B de Adenovirus/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Neoplasias do Colo do Útero/terapia , Animais , Apoptose/genética , Terapia Combinada , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/radioterapia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Gene Ther ; 15(9): 635-51, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18273054

RESUMO

RNA interference, due to its target specificity, may be highly effective as a novel therapeutic modality, but direct delivery of synthetic small interfering RNA still remains a major obstacle for this approach. To induce long-term expression and specific gene silencing, novel delivery vector system is also required. In this study, we have generated an efficient oncolytic adenovirus (Ad)-based short hairpin (shRNA) expression system (Ad-DeltaB7-U6shIL8) against IL-8, a potent proangiogenic factor. To demonstrate IL-8-specificity of this newly engineered Ad-based shRNA, we also manufactured replication-incompetent Ads (Ad-DeltaE1-CMVshIL8 and Ad-DeltaE1-U6shIL8) under the control of the cytomegalovirus (CMV) and U6 promoters, respectively. Ad-DeltaE1-U6shIL8 was highly effective in reducing IL-8 expression, and was much more effective in driving IL-8-specific shRNA than the CMV promoter-driven vector. The reduced IL-8 expression then translated into decreased angiogenesis in vitro as measured by migration, tube formation and rat aortic ring sprouting assays. In addition to its effect on endothelial cells, Ad-DeltaE1-U6shIL8 also effectively suppressed the migration and invasion of cancer cells. In vivo, intratumoral injection of Ad-DeltaB7-U6shIL8 significantly inhibited the growth of Hep3B and A549 human tumor xenografts. Histopathological analysis of Ad-DeltaB7-U6shIL8-treated tumors revealed an increase in apoptotic cells and a reduction in vessel density. Finally, Ad-DeltaB7-U6shIL8 was also shown to inhibit the growth of disseminated MDA-MB-231 breast cancer metastases. Taken together, these findings demonstrate the utility and antitumor effectiveness of oncolytic Ad expressing shRNA against IL-8.


Assuntos
Adenoviridae/genética , Neoplasias da Mama/terapia , Terapia Genética/métodos , Interleucina-8/genética , Terapia Viral Oncolítica/métodos , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Células Endoteliais/metabolismo , Feminino , Inativação Gênica , Engenharia Genética , Humanos , Interleucina-8/análise , Interleucina-8/metabolismo , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Masculino , Metaloproteinase 2 da Matriz/análise , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Neovascularização Patológica/genética , Regiões Promotoras Genéticas , Interferência de RNA , Transdução Genética/métodos , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Gene Ther ; 13(13): 1010-20, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16525479

RESUMO

Oncolytic adenoviral vectors are currently being developed as biologic anticancer agents. Coupling the lytic function of an oncolytic adenovirus (Ad) with its ability as a transgene delivery system represents a powerful extension of this methodology. A clear advantage is the amplification of a therapeutic gene, as replicating vectors would be able to infect and deliver the gene of interest to neighboring cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of the most potent stimulators of a specific and long-lasting antitumor immunity and its important role in the maturation of antigen-presenting cells to induce T-cell activation has been well documented. Similarly, the B7 family has also been shown to play an integral role in mediating an antitumor response. Most tumor cells, however, lack the expression of these costimulatory molecules on their surface, thus escaping immune system recognition. To increase the antitumor effect of an oncolytic Ad, we have generated an E1B 55 kDa-deleted oncolytic adenoviral vector, YKL-GB, that expresses both GM-CSF and B7-1. The therapeutic efficacy of YKL-GB Ad was evaluated in immunocompetent mice bearing murine melanoma B16-F10 tumors. Significant inhibition of tumor growth was seen in mice treated with YKL-GB compared to those treated with the analogous vector, YKL-1. Moreover, YKL-GB oncolytic Ad demonstrated enhanced antitumor activity and higher incidences of tumor regression compared to a replication-incompetent Ad, dl-GB, which coexpresses GM-CSF and B7-1. Localized GM-CSF and B7-1 gene transfer also conferred long-lasting immunity against a tumor re-challenge. To establish that the observed antitumor effect is associated with the generation of a tumor-specific immune response, we carried out interferon-gamma enzyme-linked immune spot assay. We observed that YKL-GB induced significantly higher immune cell activation than YKL-1. Furthermore, immunohistochemical studies demonstrated robust dendritic cells and CD4(+)/CD8(+) T-cell infiltration in these mice compared to the YKL-1-treated groups. In agreement with these results, splenocytes from tumor-bearing mice treated with YKL-GB expressed high levels of the costimulatory and activation molecules. These findings demonstrate the effectiveness of enhancing the immune response against tumors with an oncolytic Ad expressing both GM-CSF and B7-1 and provide a potential therapeutic strategy for the management of neoplasia.


Assuntos
Antígeno B7-1/genética , Terapia Genética/métodos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Melanoma/terapia , Terapia Viral Oncolítica/métodos , Neoplasias Cutâneas/terapia , Adenoviridae/genética , Animais , Antígeno B7-1/imunologia , Células Dendríticas/imunologia , Expressão Gênica , Vetores Genéticos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Humanos , Injeções Intralesionais , Interferon gama/análise , Interferon gama/imunologia , Contagem de Linfócitos , Masculino , Melanoma/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/terapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Replicação Viral
19.
Gene Ther ; 8(4): 268-73, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11313800

RESUMO

A retroviral vector constructed from the murine leukemia virus (MLV) can only express transgenes in cells undergoing mitosis, indicating its suitability as a delivery vehicle for cancer gene therapy. However, the transduction efficiency (TE) of retroviruses embedding endogenous envelope proteins in human cancer cells was found to be unsatisfactory. Recently, several research groups have demonstrated the feasibility of a retroviral vector pseudotyped with a vesicular stomatitis virus G (VSV-G) protein. In this study, the potential of VSV-G pseudotyped MLV-based retrovirus was examined as a delivery vehicle in a variety of human cancer cells including brain tumor cells in vitro and in vivo. The transduction efficiency of the 293T/G/GP/LacZ retrovirus in cell culture was superior in most cancer cells, particularly in brain tumor cells, compared with that of other retroviruses, such as PA317- or PG13-derived. The relative growth rate and phosphatidylserine expression level on the plasma membrane of target cells mainly influenced the transduction efficiency of VSV-G pseudotyped retrovirus, which suggested that both the relative growth rate and phosphatidylserine expression level were major determinants of TE. Furthermore, 293T/G/GP/LacZ could efficiently transduce human cancer cells regardless of the presence of chemical additives, whereas in other retroviruses, cationic chemical additives such as polybrene or liposomes were essential during virus infection. Finally, an average of 10% gene expression was routinely obtained exclusively in the tumor mass when 293T/G/GP/LacZ concentrated by simple ultracentrifugation was directly administrated to pre-established brain tumors in animal models (U251-N nu/nu mice or C6 Wistar rats). All told, the present study suggests that the VSV-G pseudotyped retrovirus is a suitable vector for brain tumor gene therapy.


Assuntos
Neoplasias Encefálicas/terapia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vírus da Leucemia Murina/genética , Transdução Genética , Vírus da Estomatite Vesicular Indiana , Neoplasias Encefálicas/metabolismo , Resinas de Troca de Cátion/farmacologia , Membrana Celular/metabolismo , Colesterol/análogos & derivados , Colesterol/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Brometo de Hexadimetrina/farmacologia , Humanos , Lipídeos/farmacologia , Fosfatidilserinas/metabolismo , Protaminas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Células Tumorais Cultivadas
20.
Cancer Res ; 61(6): 2404-8, 2001 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11289105

RESUMO

Unlike vascular endothelial growth factor (VEGF)-A, the effect of VEGF-C on tumor angiogenesis, vascular permeability, and leukocyte recruitment is not known. To this end, we quantified in vivo growth and vascular function in tumors derived from two VEGF-C-overexpressing (VC+) and mock-transfected cell lines (T241 fibrosarcoma and VEGF-A-/- embryonic stem cells) grown in murine dorsal skinfold chambers. VC+ tumors grew more rapidly than mock-transfected tumors and exhibited parallel increases in tumor angiogenesis. Furthermore, VEGF-C overexpression elevated vascular permeability in T241 tumors, but not in VEGF-A-/- tumors. Surprisingly, unlike VEGF-A, VEGF-C did not increase leukocyte rolling or adhesion in tumor vessels. Administration of VEGF receptor (VEGFR)-2 neutralizing antibody DC101 reduced vascular density and permeability of both VC+ and mock-transduced T241 tumors. These data suggest that VEGFR-2 signaling is critical for tumor angiogenesis and vascular permeability and that VEGFR-3 signaling does not compensate for VEGFR-2 blockade. An alternate VEGFR, VEGFR-1 or neuropilin-1, may modulate adhesion of leukocytes to tumor vessels.


Assuntos
Fatores de Crescimento Endotelial/fisiologia , Leucócitos/patologia , Neoplasias Experimentais/irrigação sanguínea , Neovascularização Patológica/fisiopatologia , Receptores Proteína Tirosina Quinases/fisiologia , Receptores de Fatores de Crescimento/fisiologia , Animais , Permeabilidade Capilar/fisiologia , Comunicação Celular/fisiologia , Divisão Celular/fisiologia , Fatores de Crescimento Endotelial/biossíntese , Fatores de Crescimento Endotelial/genética , Endotélio Vascular/patologia , Camundongos , Camundongos SCID , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , RNA/biossíntese , RNA/genética , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Fator C de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...