Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Translat ; 44: 88-101, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282752

RESUMO

Background: Mutations in Slc26a2 cause a spectrum of autosomal-recessive chondrodysplasia with a significant and negligible influence on the quality of life. It has been reported that Slc26a2 deficiency triggers the ATF6 branch of the UPR, which may, in turn, activate the negative regulator of the FGFR3 signaling pathway. However, the correlation between the deletion of Slc26a2 and the augmentation of downstream phosphorylation of FGFR3 has not been investigated in vivo. Methods: First, we constructed Slc26a2 and Fgfr3 double knockout mouse lines and observed gross views of the born mice and histological staining of the tibial growth plates. The second approach was to construct tamoxifen-inducible Cre-ERT2 mouse models to replicate SLC26A2-related non-lethal dysplastic conditions. Pharmacological intervention was performed by administering the FGFR3 inhibitor NVP-BGJ398. The effect of NVP-BGJ398 on chondrocytes was assessed by Alcian blue staining, proliferation, apoptosis, and chondrocyte-specific markers and then verified by western blotting for variations in the downstream markers of FGFR3. The growth process was detected using X-rays, micro-CT examination, histomorphometry staining of growth plates, and immunofluorescence. Results: Genetic ablation of Fgfr3 in embryonic Slc26a2-deficient chondrocytes slightly attenuated chondrodysplasia. Subsequently, in the constructed mild dysplasia model, we found that postnatal intervention with Fgfr3 gene in Slc26a2-deficient chondrocytes partially alleviated chondrodysplasia. In chondrocyte assays, NVP-BGJ398 suppressed the defective phenotype of Slc26a2-deficient chondrocytes and restored the phosphorylation downstream of FGFR3 in a concentration-dependent manner. In addition, in vivo experiments showed significant alleviation of impaired chondrocyte differentiation, and micro-CT analysis showed a clear improvement in trabecular bone microarchitectural parameters. Conclusion: Our results suggested that inhibition of FGFR3 signaling pathway overactivation and NVP-BGJ398 has promising therapeutic implications for the development of SLC26A2-related skeletal diseases in humans. The translational potential of this article: Our data provide genetic and pharmacological evidence that targeting FGFR3 signaling via NVP-BGJ398 could be a route for the treatment of SLC26A2-associated skeletal disorders, which promisingly advances translational applications and therapeutic development.

2.
FEBS J ; 289(21): 6643-6658, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35997219

RESUMO

Dampened peripheral clocks have been linked to osteoarthritis (OA), yet it is unclear whether drugging the clock can ameliorate OA. Given that RORs and REV-ERBs mediate respectively, positive and negative transcriptional feedback of the master clock gene BMAL1, we investigate whether RORs agonist Nobiletin (NOB) and SR1078, and REV-ERBs antagonist SR8278 can enhance BMAL1 expression and attenuate cartilage degeneration. NOB and SR8278 promoted BMAL1 expression and elicited mitigating effects against IL-1ß-induced degeneration of cartilage explants, as evidenced by increased cellular density and collagen synthesis along with alleviated catabolism and collagen denaturation. Despite promoted BMAL1 expression, SR1078 concomitantly suppressed chondrocyte anabolism and catabolism. Consistent with these findings, NOB and SR8278 treatment, but not SR1078, effectively attenuated structural destruction of articular cartilage in surgery-induced OA mouse models. Notably, the beneficial effects of NOB and SR8278 were evidently observed in IL-1ß-induced degeneration of human cartilage explants and immortalized human chondrocytes. Moreover, BMAL1 knockdown assays indicated that NOB and SR8278 enhanced clock function and concordantly rendered protection against altered anabolism and catabolism in a BMAL1-dependent regime. Collectively, our study suggests that targeting RORs and REV-ERBs to promote the dampened peripheral clocks could be a route taken to apply chronotherapy within the context of OA.


Assuntos
Cartilagem Articular , Relógios Circadianos , Osteoartrite , Camundongos , Animais , Humanos , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Retroalimentação , Condrócitos/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/genética , Osteoartrite/metabolismo , Cartilagem/metabolismo , Cartilagem Articular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...