Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270893

RESUMO

Coronavirus 2019 (COVID-19) has posed a serious threat to the lives and health of the majority of people worldwide. Since the early days of the outbreak, South Korea's government and citizens have made persistent efforts to provide effective prevention against further spread of the disease. In particular, the participation of individual citizens in complying with the necessary code of conduct to prevent spread of the infection, through measures such as social distancing and mask wearing, is as instrumental as the geographical tracking of the trajectory of the infected. In this paper, we propose an activity recognition method based on a wristband equipped with an IR array and inertial measurement unit (IMU) to detect individual compliance with codes of personal hygiene management, such as mask wearing, which are recommended to prevent the spread of infectious diseases. The results of activity recognition were comparatively analyzed by applying conventional machine learning algorithms and convolutional neural networks (CNNs) to the IMU time series and IR array thermal images collected from 25 subjects. When CNN and 24 × 32 thermal images were used, 97.8% accuracy was achieved (best performance), and when 6 × 8 low-resolution thermal images were used, similar performance with 97.1% accuracy was obtained. In the case of using IMU, the performance of activity recognition was lower than that obtained with the IR array, but an accuracy of 93% was achieved even in the case of applying machine learning algorithms, indicating that it is more suitable for wearable devices with low computational capability.


Assuntos
COVID-19 , Algoritmos , Humanos , Aprendizado de Máquina , Redes Neurais de Computação , SARS-CoV-2
2.
Sensors (Basel) ; 19(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640134

RESUMO

In this paper, we present an implementation work of sensing and actuation capabilities for IoT devices using the oneM2M standard-based platforms. We mainly focus on the heterogeneity of the hardware interfaces employed in IoT devices. For IoT devices (i.e., Internet-connected embedded systems) to perform sensing and actuation capabilities in a standardized manner, a well-designed middleware solution will be a crucial part of IoT platform. Accordingly, we propose an oneM2M standard-based IoT platform (called nCube) incorporated with a set of tiny middleware programs (called TAS) responsible for translating sensing values and actuation commands into oneM2M-defined resources accessible in Web-based applications. All the source codes for the oneM2M middleware platform and smartphone application are available for free in the GitHub repositories. The full details on the implementation work and open-source contributions are described.

3.
Sensors (Basel) ; 17(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019964

RESUMO

An aging population and human longevity is a global trend. Many developed countries are struggling with the yearly increasing healthcare cost that dominantly affects their economy. At the same time, people living with old adults suffering from a progressive brain disorder such as Alzheimer's disease are enduring even more stress and depression than those patients while caring for them. Accordingly, seniors' ability to live independently and comfortably in their current home for as long as possible has been crucial to reduce the societal cost for caregiving and thus give family members peace of mind, called 'aging in place' (AIP). In this paper we present a way of building AIP services using standard-based IoT platforms and heterogeneous IoT products. An AIP service platform is designed and created by combining previous standard-based IoT platforms in a collaborative way. A service composition tool is also created that allows people to create AIP services in an efficient way. To show practical usability of our proposed system, we choose a service scenario for medication compliance and implement a prototype service which could give old adults medication reminder appropriately at the right time (i.e., when it is time to need to take pills) through light and speaker at home but also wrist band and smartphone even outside the home.

4.
Sensors (Basel) ; 16(10)2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27782058

RESUMO

Conventional computing systems have been able to be integrated into daily objects and connected to each other due to advances in computing and network technologies, such as wireless sensor networks (WSNs), forming a global network infrastructure, called the Internet of Things (IoT). To support the interconnection and interoperability between heterogeneous IoT systems, the availability of standardized, open application programming interfaces (APIs) is one of the key features of common software platforms for IoT devices, gateways, and servers. In this paper, we present a standardized way of extending previously-existing WSNs towards IoT systems, building the world of the Web of Things (WoT). Based on the oneM2M software platforms developed in the previous project, we introduce a well-designed open API scheme and device-specific thing adaptation software (TAS) enabling WSN elements, such as a wireless sensor node, to be accessed in a standardized way on a global scale. Three pilot services are implemented (i.e., a WiFi-enabled smart flowerpot, voice-based control for ZigBee-connected home appliances, and WiFi-connected AR.Drone control) to demonstrate the practical usability of the open API scheme and TAS modules. Full details on the method of integrating WSN elements into three example systems are described at the programming code level, which is expected to help future researchers in integrating their WSN systems in IoT platforms, such as oneM2M. We hope that the flexibly-deployable, easily-reusable common open API scheme and TAS-based integration method working with the oneM2M platforms will help the conventional WSNs in diverse industries evolve into the emerging WoT solutions.

5.
Sensors (Basel) ; 16(4): 467, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27043578

RESUMO

The Internet of Things allows things in the world to be connected to each other and enables them to automate daily tasks without human intervention, eventually building smart spaces. This article demonstrates a prototype service based on the Internet of Things, TTEO (Things Talk to Each Other). We present the full details on the system architecture and the software platforms for IoT servers and devices, called Mobius and &Cube, respectively, complying with the globally-applicable IoT standards, oneM2M, a unique identification scheme for a huge number of IoT devices, and service scenarios with an intuitive smartphone app. We hope that our approach will help developers and lead users for IoT devices and application services to establish an emerging IoT ecosystem, just like the ecosystem for smartphones and mobile applications.

6.
Sensors (Basel) ; 15(1): 2137-60, 2015 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-25608216

RESUMO

The Internet of Things (IoT) allows machines and devices in the world to connect with each other and generate a huge amount of data, which has a great potential to provide useful knowledge across service domains. Combining the context of IoT with semantic technologies, we can build integrated semantic systems to support semantic interoperability. In this paper, we propose an integrated semantic service platform (ISSP) to support ontological models in various IoT-based service domains of a smart city. In particular, we address three main problems for providing integrated semantic services together with IoT systems: semantic discovery, dynamic semantic representation, and semantic data repository for IoT resources. To show the feasibility of the ISSP, we develop a prototype service for a smart office using the ISSP, which can provide a preset, personalized office environment by interpreting user text input via a smartphone. We also discuss a scenario to show how the ISSP-based method would help build a smart city, where services in each service domain can discover and exploit IoT resources that are wanted across domains. We expect that our method could eventually contribute to providing people in a smart city with more integrated, comprehensive services based on semantic interoperability.


Assuntos
Inteligência Artificial , Internet , Redes de Comunicação de Computadores , Integração de Sistemas , Interface Usuário-Computador
7.
Sensors (Basel) ; 14(5): 8057-81, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24803195

RESUMO

Pyroelectric infrared (PIR) sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and identification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth), three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor) and three speed levels (slow, moderate, fast). We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and identifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and identifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules.


Assuntos
Actigrafia/instrumentação , Sistemas Microeletromecânicos/instrumentação , Movimento/fisiologia , Espectrofotometria Infravermelho/instrumentação , Termografia/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Raios Infravermelhos
8.
Sensors (Basel) ; 12(10): 13458-70, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23202004

RESUMO

In this paper, we propose a new HVAC (heating, ventilation, and air conditioning) control strategy as part of the smart energy system that can balance occupant comfort against building energy consumption using ubiquitous sensing and machine learning technology. We have developed ZigBee-based wireless sensor nodes and collected realistic temperature and humidity data during one month from a laboratory environment. With the collected data, we have established a building environment model using machine learning algorithms, which can be used to assess occupant comfort level. We expect the proposed HVAC control strategy will be able to provide occupants with a consistently comfortable working or home environment.

9.
Sensors (Basel) ; 11(3): 2611-39, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163758

RESUMO

This paper presents a system of identifying individuals by their gait patterns. We take into account various distinguishable features that can be extracted from a user's gait and then divide them into two classes: walking pattern and stepping pattern. The conditions we assume are that our target environments are domestic areas, the number of users is smaller than 10, and all users ambulate with bare feet considering the everyday lifestyle of the Korean home. Under these conditions, we have developed a system that identifies individuals' gait patterns using our biometric sensor, UbiFloorII. We have created UbiFloorII to collect walking samples and created software modules to extract the user's gait pattern. To identify the users based on the gait patterns extracted from walking samples over UbiFloorII, we have deployed multilayer perceptron network, a feedforward artificial neural network model. The results show that both walking pattern and stepping pattern extracted from users' gait over the UbiFloorII are distinguishable enough to identify the users and that fusing two classifiers at the matching score level improves the recognition accuracy. Therefore, our proposed system may provide unobtrusive and automatic user identification methods in ubiquitous computing environments, particularly in domestic areas.


Assuntos
Biometria/instrumentação , Biometria/métodos , Marcha/fisiologia , Pé/anatomia & histologia , Humanos , Redes Neurais de Computação , Tamanho do Órgão , Reconhecimento Automatizado de Padrão , Design de Software , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...