Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(7): 4187-4195, 2024 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-39022965

RESUMO

Soil macro-aggregates are the main location for soil organic carbon (SOC) sequestration, which is of great significance to improve soil fertility. This study aimed to understand the mechanisms of the organic carbon (OC) sequestration in macroaggregates and improve crop yield in wheat fields on the loess plateau. With the aggregate-density fractionation method, an eight-year experiment was conducted to investigate the following three factors: ① the effects of long-term fertilization on OC fractions within macroaggregates; ② the variation characteristics of OC fractions within macroaggregates, including coarse particulate organic carbon (cPOC), fine particulate organic carbon (fPOC), intra-microaggregate particulate organic carbon (iPOC), free silt and clay particulate carbon (s+c_f), and intra-microaggregate silt and clay particulate carbon (s+c_m); ③ and the relationships between them and SOC input and yield formation. The treatments included no fertilization (CK), farmer pattern (NP), optimized fertilizers pattern (NPK), optimized fertilizers + organic fertilizers pattern (NPKM), and optimized fertilizers + biological organic fertilizers pattern (NPKB). The results showed that the application of organic and chemical fertilizer (NPKM and NPKB) improved significantly the SOC content in macroaggregates compared with that in the single fertilizer treatment (NP and NPK), which had a greater increase in SOC content in macroaggregates than that of the soil. All fertilization treatments had a tendency to increase the content of fractions iPOC, fPOC, and iPOC in macroaggregates, but silt and clay carbon (s+c_f and s+c_m) contents were decreased. The application of manure combined with chemicals markedly increased the allocations of fractions cPOC, fPOC, and iPOC reserves, but it greatly decreased (s+c_f) reserves allocation. However, the application of chemical fertilizers only significantly increased the proportion of cPOC reserves in macroaggregates. Correlation analysis showed that there were significant positive correlations among wheat grain yield and OC fractions (cPOC and fPOC) contents, SOC content, the OC content of >0.25 mm macroaggregates, and SOC input, and the correlation coefficient was 0.645-0.883. In conclusion, long-term fertilization, especially combined with organic fertilizer, could promote the free silt and clay carbon fraction (s+c_f) to transfer into other forms of OC components through the increase in soil carbon input in the wheat field of the loess plateau. Furthermore, the OC content of macroaggregates was increased overall, providing a good soil environment for crop yield.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...