Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Biomater Res ; 28: 0024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38694230

RESUMO

Photothermal therapy (PTT) at mild temperatures ranging from 44 to 45 °C holds tremendous promise as a strategy for inducing potent immunogenic cell death (ICD) within tumor tissues, which can reverse the immunosuppressive tumor microenvironment (ITM) into an immune-responsive milieu. However, accurately and precisely controlling the tumor temperature remains a formidable challenge. Here, we report the precision photothermal immunotherapy by using silica-coated gold nanorods (AuNR@SiO2), and investigating the optimal administration routes and treatment protocols, which enabled to achieve the sustained and controlled mild heating within the tumor tissues. First, the highest photothermal performance of AuNR@SiO2 with 20-nm silica shell thickness than 5 or 40 nm was confirmed in vitro and in vivo. Then, the optimal conditions for precision immunotherapy were further investigated to produce mild temperature (44 to 45 °C) accurately in tumor tissues. The optimal conditions with AuNR@SiO2 result in a distinct cell death with high early/late apoptosis and low necrosis, leading to very efficient ICD compared to lower or higher temperatures. In colon tumor-bearing mice, intratumorally injected AuNR@SiO2 efficiently promotes a mild temperature within the tumor tissues by local irradiation of near-infrared (NIR) laser. This mild PTT substantially increases the population of mature dendritic cells (DCs) and cytotoxic T cells (CTLs) within tumor tissues, ultimately reversing the ITM into an immune-responsive milieu. Furthermore, we found that the combination mild PTT with AuNR@SiO2 and anti-PD-L1 therapy could lead to the 100% complete regression of primary tumors and immunological memory to prevent tumor recurrence. Collectively, this study demonstrates that AuNR@SiO2 with a robust methodology capable of continuously inducing mild temperature accurately within the ITM holds promise as an approach to achieve the precision photothermal immunotherapy.

2.
J Nanobiotechnology ; 22(1): 109, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481326

RESUMO

BACKGROUND: Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency. METHODS: Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD. The SMAC-P (AVPIAQ) with cathepsin B-cleavable peptide (FRRG) was directly conjugated to DOX, and the resulting SMAC-P-FRRG-DOX prodrug was encapsulated into PEGylated liposomes. RESULTS: The SMAC-P-FRRG-DOX encapsulated PEGylated liposomes (Aposomes) form a stable nanostructure with an average diameter of 109.1 ± 5.14 nm and promote the apoptotic cell death mainly in cathepsin B-overexpressed cancer cells. Therefore, Aposomes induce a potent ICD in targeted cancer cells in synergy of SMAC-P with DOX in cultured cells. In colon tumor models, Aposomes efficiently accumulate in targeted tumor tissues via enhanced permeability and retention (EPR) effect and release the encapsulated prodrug of SMAC-P-FRRG-DOX, which is subsequently cleaved to SMAC-P and DOX in cancer cells. Importantly, the synergistic activity of inhibitors of apoptosis proteins (IAPs)-inhibitory SMAC-P sensitizing the effects of DOX induces a potent ICD in the cancer cells to promote dendritic cell (DC) maturation and stimulate T cell proliferation and activation, turning ITM into immune-responsive milieu. CONCLUSIONS: Eventually, the combination of Aposomes with anti-PD-L1 antibody results in a high rate of complete tumor regression (CR: 80%) and also prevent the tumor recurrence by immunological memory established during treatments.


Assuntos
Complexos Multienzimáticos , Neoplasias , Oligopeptídeos , Pró-Fármacos , Humanos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Catepsina B , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/química , Imunoterapia , Neoplasias/tratamento farmacológico , Peptídeos , Polietilenoglicóis , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Biomolecules ; 13(12)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136656

RESUMO

The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.


Assuntos
Células-Tronco Mesenquimais , Tomografia por Emissão de Pósitrons , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Imagem Multimodal
4.
Biomater Res ; 27(1): 102, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845762

RESUMO

BACKGROUND: Nano-sized drug delivery system has been widely studied as a potential technique to promote tumor-specific delivery of anticancer drugs due to its passive targeting property, but resulting in very restricted improvements in its systemic administration so far. There is a requirement for a different approach that dramatically increases the targeting efficiency of therapeutic agents at targeted tumor tissues. METHODS: To improve the tumor-specific accumulation of anticancer drugs and minimize their undesirable toxicity to normal tissues, a tumor-implantable micro-syringe chip (MSC) with a drug reservoir is fabricated. As a clinically established delivery system, six liposome nanoparticles (LNPs) with different compositions and surface chemistry are prepared and their physicochemical properties and cellular uptake are examined in vitro. Subsequently, MSC-guided intratumoral administration is studied to identify the most appropriate for the higher tumor targeting efficacy with a uniform intratumoral distribution. For efficient cancer treatment, pro-apoptotic anticancer prodrugs (SMAC-P-FRRG-DOX) are encapsulated to the optimal LNPs (SMAC-P-FRRG-DOX encapsulating LNPs; ApoLNPs), then the ApoLNPs are loaded into the 1 µL-volume drug reservoir of MSC to be delivered intratumorally for 9 h. The tumor accumulation and therapeutic effect of ApoLNPs administered via MSC guidance are evaluated and compared to those of intravenous and intratumoral administration of ApoLNP in 4T1 tumor-bearing mice. RESULTS: MSC is precisely fabricated to have a 0.5 × 4.5 mm needle and 1 µL-volume drug reservoir to achieve the uniform intratumoral distribution of LNPs in targeted tumor tissues. Six liposome nanoparticles with different compositions of 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (PC), 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (PS), 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)2000] (PEG2000-DSPE) are prepared with average sizes of 100-120 nm and loaded into the 1 µL-volume drug reservoir in MSC. Importantly negatively charged 10 mol% of PS-containing LNPs are very slowly infused into the tumor tissue through the micro-syringe of the MSC over 6 h. The intratumoral targeting efficiency of MSC guidance is 93.5%, effectively assisting the homogeneous diffusion of LNPs throughout the tumor tissue at 3.8- and 2.7-fold higher concentrations compared to the intravenous and intratumoral administrations of LNPs, respectively. Among the six LNP candidates 10 mol% of PS-containing LNPs are finally selected for preparing pro-apoptotic SMAC-P-FRRG-DOX anticancer prodrug-encapsulated LNPs (ApoLNPs) due to their moderate endocytosis rate high tumor accumulation and homogenous intratumoral distribution. The ApoLNPs show a high therapeutic effect specifically to cathepsin B-overexpressing cancer cells with 6.6 µM of IC50 value while its IC50 against normal cells is 230.7 µM. The MSC-guided administration of ApoLNPs efficiently inhibits tumor growth wherein the size of the tumor is 4.7- and 2.2-fold smaller than those treated with saline and intratumoral ApoLNP without MSC, respectively. Moreover, the ApoLNPs remarkably reduce the inhibitor of apoptosis proteins (IAPs) level in tumor tissues confirming their efficacy even in cancers with high drug resistance. CONCLUSION: The MSC-guided administration of LNPs greatly enhances the therapeutic efficiency of anticancer drugs via the slow diffusion mechanism through micro-syringe to tumor tissues for 6 h, whereas they bypass most hurdles of systemic delivery including hepatic metabolism, rapid renal clearance, and interaction with blood components or other normal tissues, resulting in the minimum toxicity to normal tissues. The negatively charged ApoLNPs with cancer cell-specific pro-apoptotic prodrug (SMAC-P-FRRG-DOX) show the highest tumor-targeting efficacy when they are treated with the MSC guidance, compared to their intravenous or intratumoral administration in 4T1 tumor-bearing mice. The MSC-guided administration of anticancer drug-encapsulated LNPs is expected to be a potent platform system that facilitates overcoming the limitations of systemic drug administration with low delivery efficiency and serious side effects.

5.
Nanomaterials (Basel) ; 13(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570543

RESUMO

Over the last 30 years, diverse types of nano-sized drug delivery systems (nanoDDSs) have been intensively explored for cancer therapy, exploiting their passive tumor targetability with an enhanced permeability and retention effect. However, their systemic administration has aroused some unavoidable complications, including insufficient tumor-targeting efficiency, side effects due to their undesirable biodistribution, and carrier-associated toxicity. In this review, the recent studies and advancements in intratumoral nanoDDS administration are generally summarized. After identifying the factors to be considered to enhance the therapeutic efficacy of intratumoral nanoDDS administration, the experimental results on the application of intratumoral nanoDDS administration to various types of cancer therapies are discussed. Subsequently, the reports on clinical studies of intratumoral nanoDDS administration are addressed in short. Intratumoral nanoDDS administration is proven with its versatility to enhance the tumor-specific accumulation and retention of therapeutic agents for various therapeutic modalities. Specifically, it can improve the efficacy of therapeutic agents with poor bioavailability by increasing their intratumoral concentration, while minimizing the side effect of highly toxic agents by restricting their delivery to normal tissues. Intratumoral administration of nanoDDS is considered to expand its application area due to its potent ability to improve therapeutic effects and relieve the systemic toxicities of nanoDDSs.

6.
Biomed Eng Lett ; 13(3): 505-514, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37519876

RESUMO

The aim of this study is to investigate the potential impact of catheterization on intimal hyperplasia and explore the efficacy of Paclitaxel loaded PLGA nanoparticles (PTX-NPs) in preventing stenosis at the site of venous injury. Under general anesthesia, Central Venous Catheters were inserted into the rat's right internal jugular veins (IJV) using the cut-down technique. Twenty bare catheters (C) and twenty PTX-NPs coated catheters (P) were assigned to one of four groups (C2, C4, P2, or P4) based on catheter type and expected survival time. 2 or 4 weeks after surgery, IJVs were completely harvested by formalin fixation and gelatin infusion and slides were stained with H&E (Haematoxylin and Eosin) and Masson's technique. The P2 (Paclitaxel coating, 2 weeks) group showed the most proliferation among the four groups and the P4 (Paclitaxel coating, 4 weeks) showed a tendency to decrease proliferation. Additionally, the lumen size in the P4 group was about 6% smaller than in the P2 group, and there was a lower prevalence of stenotic grade in the P4 group. Our study suggests that PTX-NPs coated catheters may be effective in preventing venous stenosis if the intended usage is prolonged, rather than for a short-term period. Graphical abstract: Schematic representation of catheter functionalization and coating of PTX-NPs on Catheter. Supplementary Information: The online version contains supplementary material available at 10.1007/s13534-023-00282-y.

7.
Bioact Mater ; 28: 358-375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37334068

RESUMO

Synergistic immunotherapy of immune checkpoint blockade (ICB) and immunogenic cell death (ICD) has shown remarkable therapeutic efficacy in various cancers. However, patients show low response rates and undesirable outcomes to these combination therapies owing to the recycling mechanism of programmed death-ligand 1 (PD-L1) and the systemic toxicity of ICD-inducing chemotherapeutic drugs. Herein, we propose all-in-one glycol chitosan nanoparticles (CNPs) that can deliver anti-PD-L1 peptide (PP) and doxorubicin (DOX) to targeted tumor tissues for a safe and more effective synergistic immunotherapy. The PP-CNPs, which are prepared by conjugating ᴅ-form PP (NYSKPTDRQYHF) to CNPs, form stable nanoparticles that promote multivalent binding with PD-L1 proteins on the targeted tumor cell surface, resulting in effective lysosomal PD-L1 degradation in contrast with anti-PD-L1 antibody, which induces recycling of endocytosed PD-L1. Consequently, PP-CNPs prevent subcellular PD-L1 recycling and eventually destruct immune escape mechanism in CT26 colon tumor-bearing mice. Moreover, the ICD inducer, DOX is loaded into PP-CNPs (DOX-PP-CNPs) for synergistic ICD and ICB therapy, inducing a large number of damage-associated molecular patterns (DAMPs) in targeted tumor tissues with minimal toxicity in normal tissues. When the DOX-PP-CNPs are intravenously injected into CT26 colon tumor-bearing mice, PP and DOX are efficiently delivered to the tumor tissues via nanoparticle-derived passive and active targeting, which eventually induce both lysosomal PD-L1 degradation and substantial ICD, resulting in a high rate of complete tumor regression (CR: 60%) by a strong antitumor immune response. Collectively, this study demonstrates the superior efficacy of synergistic immunotherapy using all-in-one nanoparticles to deliver PP and DOX to targeted tumor tissues.

8.
ACS Omega ; 7(48): 43492-43498, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506148

RESUMO

The adsorption of peptides and proteins on hydrophobic solid surfaces has received considerable research attention owing to their wide applications to biocompatible nanomaterials and nanodevices, such as biosensors and cell adhesion materials with reduced nanomaterial toxicity. However, fundamental understandings about physicochemical hydrophobic interactions between peptides and hydrophobic solid surfaces are still unknown. In this study, we investigate the effect of secondary structures on adsorption energies between peptides and hydrophobic solid surfaces via experimental and theoretical analyses using surface-assisted laser desorption/ionization-time-of-flight (SALDI-TOF) and molecular dynamics (MD) simulations. The hydrophobic interactions between peptides and hydrophobic solid surfaces measured via SALDI-TOF and MD simulations indicate that the hydrophobic interaction of peptides with random coil structures increased more than that of peptides with an α-helix structure when polar amino acids are replaced with hydrophobic amino acids. Additionally, our study sheds new light on the fundamental understanding of the hydrophobic interaction between hydrophobic solid surfaces and peptides that have diverse secondary structures.

9.
Int J Nanomedicine ; 17: 6317-6334, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36536939

RESUMO

Background: Ototoxicity currently has no available treatment other than medication withdrawal as soon as toxicity is suspected. The human inner ear organs have little potential for regeneration; thus, ototoxicity-induced hair cell injury is deemed permanent. Dexamethasone (Dexa) is a synthetic steroid analog that has significant potential for otoprotection in the treatment of various inner ear diseases; however, its low absorption into the inner ear prevents significant recovery of function. Nanoparticles facilitate targeted drug delivery, stabilize drug release, and increase half-life of the drug. Methods: This study aimed to develop poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded superparamagnetic iron oxide nanoparticles (SPIONs) and Dexa (PSD-NPs) to control localized drug delivery by magnetic attraction in the treatment of ototoxicity-induced hearing loss. PSD-NPs and without SPIONs (PD-NPs) were prepared using a nanoprecipitation method. Results: Using an inner ear simulating system, we confirmed that PSD-NPs has an otoprotective effect in organotypic culture that is enhanced by magnetic attraction. PSD-NPs delivered via intrabullar injection in a magnetic field penetrated the inner ear and prevented hearing loss progression to a greater degree than equivalent doses of Dexa or PSD-NPs alone (day 28: ototoxic: 80.0 ± 0.0 dB; Dexa 100: 60.0 ± 15.5 dB; PSD 100: 50.0 ± 8.2 dB; PSD 100 with magnet: 22.5 ± 5.0 dB; P < 0.05). The protective effects were confirmed in various in vivo and in vitro models of ototoxicity. Conclusion: Our findings suggest that SPIONs with Dexa and magnetic field application prevent the progression of ototoxicity-induced hearing loss through anti-apoptotic mechanisms in the inner ear.


Assuntos
Perda Auditiva , Nanopartículas , Ototoxicidade , Camundongos , Humanos , Animais , Modelos Animais de Doenças , Nanopartículas Magnéticas de Óxido de Ferro , Dexametasona/farmacologia , Fenômenos Magnéticos
10.
Biomater Res ; 26(1): 56, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258234

RESUMO

BACKGROUND: Photodynamic therapy (PDT) is a promising strategy to promote antitumor immunity by inducing immunogenic cell death (ICD) in tumor cells. However, practical PDT uses an intense visible light owing to the shallow penetration depth of the light, resulting in immunosuppression at the tumor tissues. METHODS: Herein, we propose an implantable micro-scale light-emitting diode device (micro-LED) guided PDT that enables the on-demand light activation of photosensitizers deep in the body to potentiate antitumor immunity with mild visible light. RESULTS: The micro-LED is prepared by stacking one to four micro-scale LEDs (100 µm) on a needle-shape photonic device, which can be directly implanted into the core part of the tumor tissue. The photonic device with four LEDs efficiently elicits sufficient light output powers without thermal degradation and promotes reactive oxygen species (ROS) from a photosensitizer (verteporfin; VPF). After the intravenous injection of VPF in colon tumor-bearing mice, the tumor tissues are irradiated with optimal light intensity using an implanted micro-LED. While tumor tissues under intense visible light causes immunosuppression by severe inflammatory responses and regulatory T cell activation, mild visible light elicits potent ICD in tumor cells, which promotes dendritic cell (DC) maturation and T cell activation. The enhanced therapeutic efficacy and antitumor immunity by micro-LED guided PDT with mild visible light are assessed in colon tumor models. Finally, micro-LED guided PDT in combination with immune checkpoint blockade leads to 100% complete tumor regression and also establishes systemic immunological memory to prevent the recurrence of tumors. CONCLUSION: Collectively, this study demonstrates that micro-LED guided PDT with mild visible light is a promising strategy for cancer immunotherapy.

11.
Nanomaterials (Basel) ; 12(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36234538

RESUMO

Gold nanoparticles (AuNPs) with various sizes and morphologies have been extensively investigated for effective photothermal therapy (PTT) against multiple cancer types. However, a highly dynamic and complex tumor microenvironment (TME) considerably reduces the efficacy of PTT by limiting deep tumor penetration of AuNPs. Herein, we propose a mesenchymal stem cell (MSC)-mediated deep tumor delivery of gold nanorod (AuNR) for a potent PTT. First, MSCs are treated with tetraacylated N-azidomannosamine (Ac4ManNAz) to introduce modifiable azide (N3) groups on the cell surface via metabolic glycoengineering. Then, AuNRs modified with bio-orthogonal click molecules of bicyclo[6.1.0]nonyne (AuNR@BCN) are chemically conjugated to the N3 groups on the MSC surface by copper-free click chemistry reaction, resulting in AuNR@MSCs. In cultured MSCs, the appropriate condition to incorporate the AuNR into the MSCs is optimized; in addition, the photothermal efficiency of AuNR-MSCs under light irradiation are assessed, showing efficient heat generation in vitro. In colon tumor-bearing mice, intravenously injected AuNR@MSCs efficiently accumulate within the tumor tissues by allowing deep tissue penetration owing to the tumor homing effect by natural tumor tropism of AuNR@MSCs. Upon localized light irradiation, the AuNR@MSCs significantly inhibit colon tumor growth by the enhanced photothermal effect compared to conventional AuNRs. Collectively, this study shows a promising approach of MSCs-mediated deep tumor delivery of AuNR for effective PTT.

12.
Biomaterials ; 289: 121806, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36156411

RESUMO

A carrier-free prodrug nanoparticle has emerged as a potential approach to cancer therapy. It plays a vital role in enhancing the tumor targeting and therapeutic efficacy of the anticancer agent at sites of intention wherein the prodrug nanoparticle is potentially activated. Herein, five derivatives of cathepsin B-cleavable prodrugs are synthesized via chemically conjugating different cathepsin B-cleavable peptides (Phe-Arg-Arg-Gly, Phe-Arg-Arg-Leu, Phe-Arg-Arg-Leu-Gly, Phe-Leu-Arg-Arg-Gly) to doxorubicin (DOX). The peptide-DOX prodrugs can spontaneously assemble into nanoparticles via their intermolecular hydrophobic and π-π stacking interactions. The resulting cathepsin B-cleavable prodrugs nanoparticles formed different nanoparticle structures according to the amphiphilicity and flexibility of different peptides and their particle stability and cellular uptake mechanism are carefully evaluated in vitro. Among five prodrug nanoparticles, the Phe-Arg-Arg-Leu-DOX (FRRL-DOX) nanoparticle was formed to a size of 167.5 ± 12.4 nm and stably maintains its nanoparticle structure in saline media for 3 days. The FRRL-DOX nanoparticle is well taken up by tumoral nuclei and effectively induces cancer cell death with minimal toxicity to normal cells. In addition, the FRRL-DOX nanoparticle shows 2.3-16.3-fold greater tumor-specific accumulation in vivo than other prodrug nanoparticles and free DOX. The therapeutic effect of FRRL-DOX is finally examined, demonstrating 2.1-fold better anticancer efficacy compared to that of free DOX. Notably, the FRRL-DOX nanoparticle does not exert serious toxicity in its repeated intravenous administration at a high dose of up to 10 mg/kg (equiv. to DOX). In conclusion, the peptide sequence for cathepsin B-cleavable prodrug nanoparticle is determined to be successfully optimized in a way of increasing its tumor selectivity and lowering toxicity to normal tissues.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Pró-Fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catepsina B/metabolismo , Catepsina B/uso terapêutico , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Humanos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Pró-Fármacos/química
13.
Biomater Sci ; 10(15): 4335-4344, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35775589

RESUMO

Despite advances in cancer therapy, the discovery of effective cancer treatments remains challenging. In this study, a simple method was developed to increase the efficiency of doxorubicin (DOX) delivery in a lung metastasis model. This method comprises a simple configuration to increase the delivery efficiency via precise engineering of the size, shape, loading content, and biodegradability of the drug delivery system. This system had a 3 µm discoidal shape and exerted approximately 90% burst release of the drug within the first 24 h. There was no cytotoxicity of the drug carrier up to a concentration of 1 mg ml-1, and DOX from the carrier was delivered into the cancer cells, exhibiting an anticancer effect comparable to that of the free drug. The ex vivo results revealed a strong correlation between the location of cancer cells in the lung and the location of DOX delivered by this drug delivery system. These drug carriers were confirmed to intensively deliver DOX to cancer cells in the lung, with minimal off-target effects. These findings indicate that this delivery system can be a new approach to improving the survival rate and reducing the side effects caused by anticancer drugs without the use of targeting ligands and polyethylene glycol.


Assuntos
Doxorrubicina , Neoplasias Pulmonares , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Polietilenoglicóis/farmacologia , Polímeros , Taxa de Sobrevida
14.
Cancers (Basel) ; 14(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35454950

RESUMO

One of the promising cancer treatment methods is photothermal therapy (PTT), which has achieved good therapeutic efficiency through nanoparticle-based photoabsorbers. Because of the various functions of nanoparticles, such as targeting properties, high light-to-heat conversion, and photostability, nanoparticle-mediated PTT successfully induces photothermal damage in tumor tissues with minimal side effects on surrounding healthy tissues. The therapeutic efficacy of PTT originates from cell membrane disruption, protein denaturation, and DNA damage by light-induced heat, but these biological impacts only influence localized tumor areas. This conventional nanoparticle-mediated PTT still attracts attention as a novel cancer immunotherapy, because PTT causes immune responses against cancer. PTT-induced immunogenic cell death activates immune cells for systemic anti-cancer effect. Additionally, the excellent compatibility of PTT with other treatment methods (e.g., chemotherapy and immune checkpoint blockade therapy) reinforces the therapeutic efficacy of PTT as combined immunotherapy. In this review, we investigate various PTT agents of nanoparticles and compare their applications to reveal how nanoparticle-mediated PTT undergoes a transition from thermotherapy to immunotherapy.

15.
Theranostics ; 12(5): 1999-2014, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265195

RESUMO

Rationale: Cancer immunotherapy combining immune checkpoint blockade (ICB) with chemotherapeutic drugs has provided significant clinical advances. However, such combination therapeutic regimen has suffered from severe toxicity of both drugs and low response rate of patients. In this study, we propose anti-PD-L1 peptide-conjugated prodrug nanoparticles (PD-NPs) to overcome these obstacles of current cancer immunotherapy. Methods: The functional peptide, consisted of anti-PD-L1 peptide and cathepsin B-specific cleavable peptide, is conjugated to a doxorubicin (DOX), resulting in prodrug nanoparticles of PD-NPs via intermolecular interactions. The antitumor efficacy and immune responses with minimal side effects by PD-NPs combining PD-L1 blockade and ICD are evaluated in breast tumor models. Results: The PD-NPs are taken up by PD-L1 receptor-mediated endocytosis and then induce ICD in cancer cells by DOX release. Concurrently, PD-L1 blockade by PD-NPs disrupt the immune-suppressing pathway of cancer cells, resulting in proliferation and reinvigoration of T lymphocytes. In tumor models, PD-NPs accumulate within tumor tissues via enhanced permeability and retention (EPR) effect and induce immune-responsive tumors by recruiting a large amount of immune cells. Conclusions: Collectively, targeted tumor delivery of anti-PD-L1 peptide and DOX via PD-NPs efficiently inhibit tumor progression with minimal side effects.


Assuntos
Nanopartículas , Neoplasias , Pró-Fármacos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Humanos , Morte Celular Imunogênica , Imunoterapia , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos , Pró-Fármacos/farmacologia
16.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641524

RESUMO

Photothermal therapy (PTT) is one of the most promising cancer treatment methods because hyperthermal effects and immunogenic cell death via PTT are destructive to cancer. However, PTT requires photoabsorbers that absorb near-infrared (NIR) light with deeper penetration depth in the body and effectively convert light into heat. Gold nanoparticles have various unique properties which are suitable for photoabsorbers, e.g., controllable optical properties and easy surface modification. We developed gold nanodot swarms (AuNSw) by creating small gold nanoparticles (sGNPs) in the presence of hydrophobically-modified glycol chitosan. The sGNPs assembled with each other through their interaction with amine groups of glycol chitosan. AuNSw absorbed 808-nm laser and increased temperature to 55 °C. In contrast, AuNSw lost its particle structure upon exposure to thiolated molecules and did not convert NIR light into heat. In vitro studies demonstrated the photothermal effect and immunogenic cell death after PTT with AuNSW. After intratumoral injection of AuNSw with laser irradiation, tumor growth of xenograft mouse models was depressed. We found hyperthermal damage and immunogenic cell death in tumor tissues through histological and biochemical analyses. Thiol-responsive AuNSw showed feasibility for PTT, with advanced functionality in the tumor microenvironment.


Assuntos
Quitosana/química , Nanopartículas Metálicas/química , Terapia Fototérmica/métodos , Animais , Ouro/química , Humanos , Terapia a Laser , Masculino , Nanopartículas Metálicas/uso terapêutico , Camundongos Endogâmicos BALB C , Neoplasias/terapia , Tamanho da Partícula , Terapia Fototérmica/instrumentação , Compostos de Sulfidrila/química , Temperatura , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Sci Rep ; 11(1): 16776, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34408220

RESUMO

We developed a reusable surface-amplified nanobiosensor for monitoring airborne viruses with a sub-PFU/mL level detection limit. Here, sandwich structures consisted of magnetic particles functionalized with antibodies, target viruses, and alkaline phosphatases (ALPs) were formed, and they were magnetically concentrated on Ni patterns near an electrochemical sensor transducer. Then, the electrical signals from electrochemical markers generated by ALPs were measured with the sensor transducer, enabling highly-sensitive virus detection. The sandwich structures in the used sensor chip could be removed by applying an external magnetic field, and we could reuse the sensor transducer chip. As a proof of concepts, the repeated detection of airborne influenza virus using a single sensor chip was demonstrated with a detection limit down to a sub-PFU/mL level. Using a single reusable sensor transducer chip, the hemagglutinin (HA) of influenza A (H1N1) virus with different concentrations were measured down to 10 aM level. Importantly, our sensor chip exhibited reliable sensing signals even after more than 18 times of the repeated HA sensing measurements. Furthermore, airborne influenza viruses collected from the air could be measured down to 0.01 PFU/mL level. Interestingly, the detailed quantitative analysis of the measurement results revealed the degradation of HA proteins on the viruses after the air exposure. Considering the ultrasensitivity and reusability of our sensors, it can provide a powerful tool to help preventing epidemics by airborne pathogens in the future.


Assuntos
Técnicas Biossensoriais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/análise , Vírus da Influenza A Subtipo H1N1 , Humanos , Limite de Detecção , Sensibilidade e Especificidade
19.
Nanomaterials (Basel) ; 11(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203541

RESUMO

Lymph node mapping is important in cancer immunotherapy because the morphology of lymph nodes is one of the crucial evaluation criteria of immune responses. We developed new theragnostic glycol-chitosan-coated gold nanoparticles (GC-AuNPs), which highlighted lymph nodes in ultrasound-guided photoacoustic (US/PA) imaging. Moreover, the ovalbumin epitope was conjugated GC-AuNPs (OVA-GC-AuNPs) for delivering tumor antigen to lymph node resident macrophage. In vitro studies proved the vigorous endocytosis activity of J774A.1 macrophage and consequent strong photoacoustic signals from them. The macrophages also presented a tumor antigen when OVA-GC-AuNPs were used for cellular uptake. After the lingual injection of GC-AuNPs into healthy mice, cervical lymph nodes were visible in a US/PA imaging system with high contrast. Three-dimensional analysis of lymph nodes revealed that the accumulation of GC-AuNPs in the lymph node increased as the post-injection time passed. Histological analysis showed GC-AuNPs or OVA-GC-AuNPs located in subcapsular and medullar sinuses where macrophages are abundant. Our new theragnostic GC-AuNPs present a superior performance in US/PA imaging of lymph nodes without targeting moieties or complex surface modification. Simultaneously, GC-AuNPs were able to deliver tumor antigens to cause macrophages to present the OVA epitope at targeted lymph nodes, which would be valuable for cancer immunotherapy.

20.
Biomolecules ; 11(6)2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198783

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for the specific detection of FMDV serotypes O and A by utilizing a magnetic nanoparticle labeling technique with resorufin ß-d-glucopyranoside (res-ß-glc) and ß-glucosidase (ß-glc), without the use of typical lateral flow assay or polymerase chain reaction. FMDV serotypes O and A were reacted with pan-FMDV antibodies that recognize all seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3). The antigen-antibody complex was then immobilized on magnetic nanoparticles and reacted with ß-glc-conjugated FMDV type O or type A antibodies. Subsequently, the addition of res-ß-glc resulted in the release of fluorescent resorufin and glucose owing to catalytic hydrolysis by ß-glc. The detection limit of fluorescent signals using a fluorescence spectrophotometer was estimated to be log(6.7) and log(5.9) copies/mL for FMDV type O and A, respectively, while that of electrochemical signals using a glucometer was estimated to be log(6.9) and log(6.1) copies/mL for FMDV type O and A, respectively. Compared with a commercially available lateral flow assay diagnostic kit for immunochromatographic detection of FMDV type O and A, this dual-modal detection platform offers approximately four-fold greater sensitivity. This highly sensitive and accurate dual-modal detection method can be used for effective disease diagnosis and treatment, and will find application in the early-stage diagnosis of viral diseases and next-generation diagnostic platforms.


Assuntos
Técnicas Eletroquímicas/métodos , Vírus da Febre Aftosa/química , Vírus da Febre Aftosa/metabolismo , Sorogrupo , Sorotipagem/métodos , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/sangue , Vírus da Febre Aftosa/isolamento & purificação , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/análise , Nanopartículas Magnéticas de Óxido de Ferro/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...